Consider wave equations of the form
$\begin{align*}u''(t)+ A^2u(t)=0\end{align*}$
with $A$ an injective selfadjoint operator on a complex Hilbert space $\mathcal{H}$. The kinetic, potential, and total energies of a solution $u$ are
$\begin{align*}K(t)= \| u'(t)\|^2, P(t)= \|Au(t)\|^2, E(t) = K(t)+P(t).\end{align*}$
Finite energy solutions are those mild solutions for which $E(t)$ is finite. For such solutions $E(t)= E(0)$, that is, energy is conserved, and asymptotic equipartition of energy
$\begin{align*}\lim_{t \longrightarrow ± ∞}K(t) = \lim_{t \longrightarrow ± ∞}P(t) = \frac{E(0)}{2}\end{align*}$
holds for all finite energy mild solutions iff $e^{itA}\longrightarrow 0$ in the weak operator topology. In this paper we present the first extension of this result to the case where $A$ is time dependent.
Citation: |
J. L. Doob,
Stochastic Processes Reprint of the 1953 original. Wiley Classics Library. A Wiley-Interscience Publication. John Wiley & Sons, Inc. , New York, 1990.
doi: 10.1007/0-471-52369-0.![]() ![]() ![]() |
|
J. A. Goldstein
, An asymptotic property of solutions of wave equations, Proc. Amer. Math. Soc., 23 (1969)
, 359-363.
doi: 10.1090/S0002-9939-1969-0250125-1.![]() ![]() ![]() |
|
J. A. Goldstein
, An asymptotic property of solutions of wave equations, Ⅱ, J. Math. Anal. Appl., 32 (1970)
, 392-399.
doi: 10.1016/0022-247X(70)90305-7.![]() ![]() ![]() |
|
J. A. Goldstein,
Semigroups of Linear Operators and Applications 1$^{st}$ edition, Oxford University Press, New York and Oxford, 1985.
doi: 10.1007/0-19-503540-2.![]() ![]() ![]() |
|
J. A. Goldstein
and G. Reyes
, Equipartition of operator weighted energies in damped wave equations, Asymptotic Anal., 81 (2013)
, 171-187.
![]() ![]() |