We study by Γ-convergence the stochastic homogenization of discrete energies on a class of random lattices as the lattice spacing vanishes. We consider general bounded spin systems at the bulk scaling and prove a homogenization result for stationary lattices. In the ergodic case we obtain a deterministic limit.
Citation: |
M. A. Akcoglu and U. Krengel , Ergodic theorems for superadditive processes, J. Reine Ang. Math., 323 (1981) , 53-67. doi: 10.1515/crll.1981.323.53. | |
R. Alicandro and M. Cicalese , A general integral representation result for continuum limits of discrete energies with superlinear growth, SIAM J. Math. Anal., 36 (2004) , 1-37. doi: 10.1137/S0036141003426471. | |
R. Alicandro, A. Braides and M. Cicalese, book in preparation. | |
R. Alicandro , A. Braides and M. Cicalese , Continuum limits of discrete thin films with superlinear growth densities, Calc. Var. and PDE, 33 (2008) , 267-297. doi: 10.1007/s00526-008-0159-4. | |
R. Alicandro , M. Cicalese and A. Gloria , Variational description of bulk energies for bounded and unbounded spin systems, Nonlinearity, 21 (2008) , 1881-1910. doi: 10.1088/0951-7715/21/8/008. | |
R. Alicandro , M. Cicalese and A. Gloria , Integral representation results for energies defined on stochastic lattices and application to nonlinear elasticity, Arch. Rat. Mech. Anal., 200 (2011) , 881-943. doi: 10.1007/s00205-010-0378-7. | |
R. Alicandro , M. Cicalese and M. Ruf , Domain formation in magnetic polymer composites: An approach via stochastic homogenization, Arch. Rat. Mech. Anal., 218 (2015) , 945-984. doi: 10.1007/s00205-015-0873-y. | |
R. Alicandro and M. S. Gelli , Local and non local continuum limits of Ising type energies for spin systems, SIAM J. Math. Anal., 48 (2016) , 895-931. doi: 10.1137/140997373. | |
A. Braides, Γ-convergence for Beginners, Oxford Lecture Series in Mathematics and its Applications 22, Oxford University Press, Oxford, 2002. doi: 10.1093/acprof:oso/9780198507840.001.0001. | |
A. Braides and M. Cicalese , Interfaces, modulated phases and textures in lattice systems, Arch. Rat. Mech. Anal., (2016) , 1-41. doi: 10.1007/s00205-016-1050-7. | |
A. Braides , M. Cicalese and F. Solombrino , Q-tensor continuum energies as limits of head-to-tail symmetric spin systems, SIAM J. Math. Anal., 47 (2015) , 2832-2867. doi: 10.1137/130941341. | |
A. Braides and A. Defranceschi, Homogenization of Multiple Integrals, Oxford Lecture Series in Mathematics and its Applications 12, Oxford University Press, New York, 1998. | |
A. Braides and L. Truskinovsky , Asymptotic expansions by Γ-convergence, Contin. Mech. Thermodyn., 20 (2008) , 21-62. doi: 10.1007/s00161-008-0072-2. | |
G. Buttazzo, Semicontinuity, Relaxation and Integral Representation in the Calculus of Variations (Pitman Research Notes in Mathematics Ser. 207), 1989. | |
M. Cicalese , M. Ruf and F. Solombrino , Chirality transitions in frustrated S2-valued spin systems, Math. Models Methods Appl. Sci., 26 (2016) , 1481-1529. doi: 10.1142/S0218202516500366. | |
M. Cicalese and F. Solombrino , Frustrated ferromagnetic spin chains: A variational approach to chirality transitions, Journal of Nonlinear Science, 25 (2015) , 291-313. doi: 10.1007/s00332-015-9230-4. | |
G. Dal Maso and L. Modica , Integral functionals determined by their minima, Rend. Semin. Mat. Univ. Padova, 76 (1986) , 255-267. | |
G. Dal Maso and L. Modica , Nonlinear stochastic homogenization and ergodic theory, J. Reine. Ang. Math., 368 (1986) , 28-42. | |
I. Fonseca and G. Leoni, Modern Methods in the Calculus of Variations: Lp Spaces Springer, New York, 2007. | |
D. Gale , V. Klee and R. T. Rockafellar , Convex functions on convex polytopes, Proc. Amer. Math. Soc., 19 (1968) , 867-873. doi: 10.1090/S0002-9939-1968-0230219-6. |