February  2017, 10(1): 119-139. doi: 10.3934/dcdss.2017007

Rigidity of three-dimensional lattices and dimension reduction in heterogeneous nanowires

1. 

SISSA, Via Bonomea 265, 34136 Trieste, Italy

2. 

University of Sussex, Department of Mathematics, Pevensey 2 Building, Falmer Campus, Brighton BN1 9QH, United Kingdom

3. 

University of Würzburg, Institute of Mathematics, Emil-Fischer-Straße 40, 97074 Würzburg, Germany

Received  January 2015 Revised  July 2015 Published  December 2016

Fund Project: This work was partially supported by the DFG grant SCHL 1706/2-1. The research of G.L. was supported by the ERC grant No. 290888

In the context of nanowire heterostructures we perform a discrete to continuum limit of the corresponding free energy by means of Γ-convergence techniques. Nearest neighbours are identified by employing the notions of Voronoi diagrams and Delaunay triangulations. The scaling of the nanowire is done in such a way that we perform not only a continuum limit but a dimension reduction simultaneously. The main part of the proof is a discrete geometric rigidity result that we announced in an earlier work and show here in detail for a variety of three-dimensional lattices. We perform the passage from discrete to continuum twice: once for a system that compensates a lattice mismatch between two parts of the heterogeneous nanowire without defects and once for a system that creates dislocations. It turns out that we can verify the experimentally observed fact that the nanowires show dislocations when the radius of the specimen is large.

Citation: Giuliano Lazzaroni, Mariapia Palombaro, Anja Schlömerkemper. Rigidity of three-dimensional lattices and dimension reduction in heterogeneous nanowires. Discrete & Continuous Dynamical Systems - S, 2017, 10 (1) : 119-139. doi: 10.3934/dcdss.2017007
References:
[1]

R. Alicandro, G. Lazzaroni and M. Palombaro, Derivation of a rod theory from lattice systems with interactions beyond nearest neighbours Preprint SISSA 58/2016/MATE. Google Scholar

[2]

A. BraidesM. Solci and E. Vitali, A derivation of linear elastic energies from pair-interaction atomistic systems, Netw. Heterog. Media, 2 (2007), 551-567.  doi: 10.3934/nhm.2007.2.551.  Google Scholar

[3]

E. ErtekinP. A. GreaneyD. C. Chrzan and T. D. Sands, Equilibrium limits of coherency in strained nanowire heterostructures, J. Appl. Phys., 97 (2005), 114325.   Google Scholar

[4]

S. Fanzon, M. Palombaro and M. Ponsiglione, A variational model for dislocations at semi-coherent interfaces, Preprint arXiv: 1512. 03795 (2015). Google Scholar

[5]

L. Flatley and F. Theil, Face-centered cubic crystallization of atomistic configurations, Arch. Ration. Mech. Anal., 218 (2015), 363-416.  doi: 10.1007/s00205-015-0862-1.  Google Scholar

[6]

G. FrieseckeR. D. James and S. Müller, A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity, Comm. Pure Appl. Math., 55 (2002), 1461-1506.  doi: 10.1002/cpa.10048.  Google Scholar

[7]

G. Friesecke and F. Theil, Validity and failure of the Cauchy-Born Hypothesis in a two-dimensional mass-spring lattice, J. Nonlinear Sci., 12 (2002), 445-478.  doi: 10.1007/s00332-002-0495-z.  Google Scholar

[8] G. Grosso and G. Pastori Parravicini, Solid State Physics, 2nd edition, Academic Press, Elsevier, Oxford, 2014.   Google Scholar
[9]

P. M. Gruber and J. M. Willis, eds. , Handbook of Convex Geometry, Volume A. , Elsevier Science Publishers B. V. , North-Holland, Amsterdam, 1993. Google Scholar

[10]

K. L. Kavanagh, Misfit dislocations in nanowire heterostructures, Semicond. Sci. Technol., 25 (2010), 024006.   Google Scholar

[11]

G. LazzaroniM. Palombaro and A. Schlömerkemper, A discrete to continuum analysis of dislocations in nanowire heterostructures, Commun. Math. Sci., 13 (2015), 1105-1133.  doi: 10.4310/CMS.2015.v13.n5.a3.  Google Scholar

[12]

G. LazzaroniM. Palombaro and A. Schlömerkemper, Dislocations in nanowire heterostructures: From discrete to continuum, Proc. Appl. Math. Mech., 13 (2013), 541-544.   Google Scholar

[13]

S. Müller and M. Palombaro, Derivation of a rod theory for biphase materials with dislocations at the interface, Calc. Var. Partial Differential Equations, 48 (2013), 315-335.  doi: 10.1007/s00526-012-0552-x.  Google Scholar

[14]

B. Schmidt, A derivation of continuum nonlinear plate theory from atomistic models, Multiscale Model. Simul., 5 (2006), 664-694.  doi: 10.1137/050646251.  Google Scholar

[15]

V. SchmidtJ. V. Wittemann and U. Gösele, Growth, thermodynamics, and electrical properties of silicon nanowires, Chem. Rev., 110 (2010), 361-388.   Google Scholar

[16]

F. Theil, A proof of crystallization in two dimensions, Comm. Math. Phys., 262 (2006), 209-236.  doi: 10.1007/s00220-005-1458-7.  Google Scholar

show all references

References:
[1]

R. Alicandro, G. Lazzaroni and M. Palombaro, Derivation of a rod theory from lattice systems with interactions beyond nearest neighbours Preprint SISSA 58/2016/MATE. Google Scholar

[2]

A. BraidesM. Solci and E. Vitali, A derivation of linear elastic energies from pair-interaction atomistic systems, Netw. Heterog. Media, 2 (2007), 551-567.  doi: 10.3934/nhm.2007.2.551.  Google Scholar

[3]

E. ErtekinP. A. GreaneyD. C. Chrzan and T. D. Sands, Equilibrium limits of coherency in strained nanowire heterostructures, J. Appl. Phys., 97 (2005), 114325.   Google Scholar

[4]

S. Fanzon, M. Palombaro and M. Ponsiglione, A variational model for dislocations at semi-coherent interfaces, Preprint arXiv: 1512. 03795 (2015). Google Scholar

[5]

L. Flatley and F. Theil, Face-centered cubic crystallization of atomistic configurations, Arch. Ration. Mech. Anal., 218 (2015), 363-416.  doi: 10.1007/s00205-015-0862-1.  Google Scholar

[6]

G. FrieseckeR. D. James and S. Müller, A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity, Comm. Pure Appl. Math., 55 (2002), 1461-1506.  doi: 10.1002/cpa.10048.  Google Scholar

[7]

G. Friesecke and F. Theil, Validity and failure of the Cauchy-Born Hypothesis in a two-dimensional mass-spring lattice, J. Nonlinear Sci., 12 (2002), 445-478.  doi: 10.1007/s00332-002-0495-z.  Google Scholar

[8] G. Grosso and G. Pastori Parravicini, Solid State Physics, 2nd edition, Academic Press, Elsevier, Oxford, 2014.   Google Scholar
[9]

P. M. Gruber and J. M. Willis, eds. , Handbook of Convex Geometry, Volume A. , Elsevier Science Publishers B. V. , North-Holland, Amsterdam, 1993. Google Scholar

[10]

K. L. Kavanagh, Misfit dislocations in nanowire heterostructures, Semicond. Sci. Technol., 25 (2010), 024006.   Google Scholar

[11]

G. LazzaroniM. Palombaro and A. Schlömerkemper, A discrete to continuum analysis of dislocations in nanowire heterostructures, Commun. Math. Sci., 13 (2015), 1105-1133.  doi: 10.4310/CMS.2015.v13.n5.a3.  Google Scholar

[12]

G. LazzaroniM. Palombaro and A. Schlömerkemper, Dislocations in nanowire heterostructures: From discrete to continuum, Proc. Appl. Math. Mech., 13 (2013), 541-544.   Google Scholar

[13]

S. Müller and M. Palombaro, Derivation of a rod theory for biphase materials with dislocations at the interface, Calc. Var. Partial Differential Equations, 48 (2013), 315-335.  doi: 10.1007/s00526-012-0552-x.  Google Scholar

[14]

B. Schmidt, A derivation of continuum nonlinear plate theory from atomistic models, Multiscale Model. Simul., 5 (2006), 664-694.  doi: 10.1137/050646251.  Google Scholar

[15]

V. SchmidtJ. V. Wittemann and U. Gösele, Growth, thermodynamics, and electrical properties of silicon nanowires, Chem. Rev., 110 (2010), 361-388.   Google Scholar

[16]

F. Theil, A proof of crystallization in two dimensions, Comm. Math. Phys., 262 (2006), 209-236.  doi: 10.1007/s00220-005-1458-7.  Google Scholar

Figure 1.  In the face-centred cubic lattice the nearest-neighbour structure of the atoms provides a subdivision of the space into tetrahedra (A) and octahedra (B). Figure (C) shows a quarter of an octahedron in the same unit cell. Grey dots denote points lying on the hidden facets
Figure 2.  The hexagonal close-packed lattice is associated with a tessellation of tetrahedra and octahedra as the ones in the figure. Only some of the bonds and some of the polyhedra of the pretriangulation are displayed
Figure 3.  The body-centred cubic lattice is associated with a tessellation of irregular tetrahedra as the one in the figure
Figure 4.  Cubic cell in the diamond lattice $\mathcal{L}^{\rm{D}}$. Atoms from the sublattice $\mathcal{L}^{\rm{D}}_1$ are represented in black/grey, while white atoms are from the sublattice $\mathcal{L}^{\rm{D}}_2$. Nearest-neighbour bonds are displayed by solid thick lines. Moreover, the picture shows a tetrahedron from the Delaunay pretriangulation of $\mathcal{L}^{\rm{D}}_1$: its edges (solid and dashed thin lines) correspond to next-to-nearest neighbours in $\mathcal{L}^{\rm{D}}$. A white atom lies at the barycentre of the tetrahedron, which is further divided into four irregular tetrahedra by the bonds between the barycentre and each vertex
Figure 5.  Bonds and triangulation in a honeycomb lattice. The lattice is given by $\mathcal{L}^✡:=\mathcal{L}^✡_1 \cup \mathcal{L}^✡_2$, where $\mathcal{L}^✡_i:={\rm{u}}_i^✡ + \xi_1{\rm{v}}^✡_1+\xi_2{\rm{v}}^✡_2 \colon \ \xi_1,\xi_2 \in\mathbb{Z}\}$, ${\rm{v}}^✡_1:=(1,0)$, ${\rm{v}}^✡_2:=(\frac12,\frac{\sqrt3}2)$, ${\rm{u}}^✡_1:=(0,0)$, ${\rm{u}}^✡_2:=(0,\frac{\sqrt3}3)$. This results into two interpenetrating sublattices $\mathcal{L}^✡_1$ and $\mathcal{L}^✡_2$, both being hexagonal (i.e., equilateral triangular). Atoms from $\mathcal{L}^✡_1$ and $\mathcal{L}^✡_2$ are displayed in different colors in the picture, respectively in black and in white. In the left part of the figure we indicate nearest neighbour (solid) and next-to-nearest neighbour bonds (dashed lines). The right part of the figure shows a possible triangulation, that is the natural triangulation of $\mathcal{L}^✡_1$ enriched by considering the nearest-neighbour bonds between atoms $x\in\mathcal{L}^✡_1$ and $y\in\mathcal{L}^✡_2$. This corresponds to ignoring the bonds between atoms of $\mathcal{L}^✡_2$, cf. Section 2.3
Figure 6.  By cutting a cubic lattice along certain transverse planes, one finds two-dimensional hexagonal Bravais lattices. (A) face-centred; (B) body-centred
Figure 7.  Dislocations in a honeycomb-type lattice. The bonds at the interface are chosen in the following way: First one considers only black atoms and finds a Delaunay pretriangulation, which is then refined to a triangulation (dashed lines); the same is done for white atoms (dotted lines). The dashed and dotted lines thus obtained give the bonds between next-to-nearest neighbours. Finally, each white (resp. black) atom lying inside a triangle formed by three black (resp. white) atoms is connected to the vertices of that triangle by nearest-neighbour bonds (solid lines)
Figure 8.  The tetrahedron $\mathcal S$ and its image $F(\mathcal S)$
Figure 9.  The octahedron $\mathcal O$
Figure 10.  (A) The image of $\mathcal{O}$ through a piece-wise affine map $u$ such that $l_i=1$ for each $i\neq 3$. (B) The projection of $u(\mathcal{O})$ on the plane $p$, where $O=\Pi(Q_1)=\Pi(Q_4)$
[1]

Gianni Dal Maso, Giuliano Lazzaroni. Crack growth with non-interpenetration: A simplified proof for the pure Neumann problem. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1219-1231. doi: 10.3934/dcds.2011.31.1219

[2]

Sylvia Serfaty. Gamma-convergence of gradient flows on Hilbert and metric spaces and applications. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1427-1451. doi: 10.3934/dcds.2011.31.1427

[3]

Marco Cicalese, Antonio DeSimone, Caterina Ida Zeppieri. Discrete-to-continuum limits for strain-alignment-coupled systems: Magnetostrictive solids, ferroelectric crystals and nematic elastomers. Networks & Heterogeneous Media, 2009, 4 (4) : 667-708. doi: 10.3934/nhm.2009.4.667

[4]

Raz Kupferman, Cy Maor. The emergence of torsion in the continuum limit of distributed edge-dislocations. Journal of Geometric Mechanics, 2015, 7 (3) : 361-387. doi: 10.3934/jgm.2015.7.361

[5]

Manuel Friedrich, Bernd Schmidt. On a discrete-to-continuum convergence result for a two dimensional brittle material in the small displacement regime. Networks & Heterogeneous Media, 2015, 10 (2) : 321-342. doi: 10.3934/nhm.2015.10.321

[6]

Mads R. Bisgaard. Mather theory and symplectic rigidity. Journal of Modern Dynamics, 2019, 15: 165-207. doi: 10.3934/jmd.2019018

[7]

Julian Braun, Bernd Schmidt. On the passage from atomistic systems to nonlinear elasticity theory for general multi-body potentials with p-growth. Networks & Heterogeneous Media, 2013, 8 (4) : 879-912. doi: 10.3934/nhm.2013.8.879

[8]

Gianni Dal Maso. Ennio De Giorgi and $\mathbf\Gamma$-convergence. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1017-1021. doi: 10.3934/dcds.2011.31.1017

[9]

Alexander Mielke. Deriving amplitude equations via evolutionary $\Gamma$-convergence. Discrete & Continuous Dynamical Systems - A, 2015, 35 (6) : 2679-2700. doi: 10.3934/dcds.2015.35.2679

[10]

Roberto Alicandro, Giuliano Lazzaroni, Mariapia Palombaro. Derivation of a rod theory from lattice systems with interactions beyond nearest neighbours. Networks & Heterogeneous Media, 2018, 13 (1) : 1-26. doi: 10.3934/nhm.2018001

[11]

Ning Zhang, Qiang Wu. Online learning for supervised dimension reduction. Mathematical Foundations of Computing, 2019, 2 (2) : 95-106. doi: 10.3934/mfc.2019008

[12]

Sanda Cleja-Ţigoiu, Raisa Paşcan. Non-local elasto-viscoplastic models with dislocations and non-Schmid effect. Discrete & Continuous Dynamical Systems - S, 2013, 6 (6) : 1621-1639. doi: 10.3934/dcdss.2013.6.1621

[13]

Luis Barreira. Dimension theory of flows: A survey. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3345-3362. doi: 10.3934/dcdsb.2015.20.3345

[14]

Simone Farinelli. Geometric arbitrage theory and market dynamics. Journal of Geometric Mechanics, 2015, 7 (4) : 431-471. doi: 10.3934/jgm.2015.7.431

[15]

Andrew D. Lewis, David R. Tyner. Geometric Jacobian linearization and LQR theory. Journal of Geometric Mechanics, 2010, 2 (4) : 397-440. doi: 10.3934/jgm.2010.2.397

[16]

Ulrike Kant, Werner M. Seiler. Singularities in the geometric theory of differential equations. Conference Publications, 2011, 2011 (Special) : 784-793. doi: 10.3934/proc.2011.2011.784

[17]

Anas Eskif, Julio C. Rebelo. Global rigidity of conjugations for locally non-discrete subgroups of $ {\rm {Diff}}^{\omega} (S^1) $. Journal of Modern Dynamics, 2019, 15: 41-93. doi: 10.3934/jmd.2019013

[18]

Gabriella Bretti, Ciro D’Apice, Rosanna Manzo, Benedetto Piccoli. A continuum-discrete model for supply chains dynamics. Networks & Heterogeneous Media, 2007, 2 (4) : 661-694. doi: 10.3934/nhm.2007.2.661

[19]

Martin Kružík, Ulisse Stefanelli, Chiara Zanini. Quasistatic evolution of magnetoelastic plates via dimension reduction. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5999-6013. doi: 10.3934/dcds.2015.35.5999

[20]

Lucia Scardia, Anja Schlömerkemper, Chiara Zanini. Towards uniformly $\Gamma$-equivalent theories for nonconvex discrete systems. Discrete & Continuous Dynamical Systems - B, 2012, 17 (2) : 661-686. doi: 10.3934/dcdsb.2012.17.661

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (28)
  • HTML views (101)
  • Cited by (0)

[Back to Top]