February  2017, 10(1): 141-160. doi: 10.3934/dcdss.2017008

Carbon-nanotube geometries: Analytical and numerical results

1. 

Dipartimento di Ingegneria meccanica, energetica, gestionale, e dei trasporti (DIME), Università degli Studi di Genova, Piazzale Kennedy 1, I-16129 Genova, Italy

2. 

Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, A-1090 Vienna, Austria

3. 

Faculty of Mathematics, Kyushu University, 744 Motooka, Nishiku, Fukuoka, 819-0395, Japan

4. 

Istituto di Matematica Applicata e Tecnologie Informatiche "E. Magenes" -CNR, v. Ferrata 1, I-27100 Pavia, Italy

Received  June 2015 Revised  October 2015 Published  December 2016

We investigate carbon-nanotubes under the perspective ofgeometry optimization. Nanotube geometries are assumed to correspondto atomic configurations whichlocally minimize Tersoff-type interactionenergies. In the specific cases of so-called zigzag and armchairtopologies, candidate optimal configurations are analytically identifiedand their local minimality is numerically checked. Inparticular, these optimal configurations do not correspond neither tothe classical Rolled-up model [5] nor to themore recent polyhedral model [3]. Eventually, theelastic response of the structure under uniaxial testing is numericallyinvestigated and the validity of the Cauchy-Born rule is confirmed.

Citation: Edoardo Mainini, Hideki Murakawa, Paolo Piovano, Ulisse Stefanelli. Carbon-nanotube geometries: Analytical and numerical results. Discrete & Continuous Dynamical Systems - S, 2017, 10 (1) : 141-160. doi: 10.3934/dcdss.2017008
References:
[1]

P. M. AgrawalB. S. SudalayandiL. M. Raff and R. Komandur, Molecular dynamics (MD) simulations of the dependence of C-C bond lengths and bond angles on the tensile strain in single-wall carbon nanotubes (SWCNT), Comp. Mat. Sci., 41 (2008), 450-456.  doi: 10.1016/j.commatsci.2007.05.001.  Google Scholar

[2]

M. E. BudykaT. S. ZyubinaA. G. RyabenkoS. H. Lin and A. M. Mebel, Bond lengths and diameters of armchair single-walled carbon nanotubes, Chem. Phys. Lett., 407 (2005), 266-271.   Google Scholar

[3]

B. J. Cox and J. M. Hill, Exact and approximate geometric parameters for carbon nanotubes incorporating curvature, Carbon, 45 (2007), 1453-1462.  doi: 10.1016/j.carbon.2007.03.028.  Google Scholar

[4]

M. S. DresselhausG. Dresselhaus and R. Saito, Carbon fibers based on C60 ad their symmetry, Phys. Rev. B, 45 (1992), 6234-6242.   Google Scholar

[5]

M. S. DresselhausG. Dresselhaus and R. Saito, Physics of carbon nanotubes, Carbon Nanotubes, (1996), 27-35.  doi: 10.1016/B978-0-08-042682-2.50009-6.  Google Scholar

[6]

W. E and D. Li, On the crystallization of 2D hexagonal lattices, Comm. Math. Phys., 286 (2009), 1099-1140.  doi: 10.1007/s00220-008-0586-2.  Google Scholar

[7]

R. D. James, Objective structures, J. Mech. Phys. Solids, 54 (2006), 2354-2390.  doi: 10.1016/j.jmps.2006.05.008.  Google Scholar

[8]

H. JiangP. ZhangB. LiuY. HuansP. H. GeubelleH. Gao and K. C. Hwang, The effect of nanotube radius on the constitutive model for carbon nanotubes, Comp. Mat. Sci., 28 (2003), 429-442.  doi: 10.1016/j.commatsci.2003.08.004.  Google Scholar

[9]

V. K. Jindal and A. N. Imtani, Bond lengths of armchair single-walled carbon nanotubes and their pressure dependence, Comp. Mat. Sci., 44 (2008), 156-162.   Google Scholar

[10]

R. A. JishiM. S. Dresselhaus and G. Dresselhaus, Symmetry properties and chiral carbon nanotubes, Phys. Rev. B, 47 (1993), 166671-166674.   Google Scholar

[11]

K. Kanamits and S. Saito, Geometries, electronic properties, and energetics of isolated single-walled carbon nanotubes, J. Phys. Soc. Japan, 71 (2002), 483-486.  doi: 10.1143/JPSJ.71.483.  Google Scholar

[12]

A. KrishnanE. DujardinT. W. EbbesenP. N. Yianilos and M. M. J. Treacy, Young's modulus of single-walled nanotubes, Phys. Rev. B, 58 (1998), 14013-14019.  doi: 10.1103/PhysRevB.58.14013.  Google Scholar

[13]

J. KurtiV. ZolyomiM. Kertesz and G. Sun, The geometry and the radial breathing model of carbon nanotubes: Beyond the ideal behaviour, New J. Phys., 5 (2003), 1-21.   Google Scholar

[14]

R. K. F. LeeB. J. Cox and J. M. Hill, General rolled-up and polyhedral models for carbon nanotubes, Fullerenes, Nanotubes and Carbon Nanostructures, 19 (2011), 726-748.  doi: 10.1080/1536383X.2010.494786.  Google Scholar

[15]

E. Mainini and U. Stefanelli, Crystallization in carbon nanostructures, Comm. Math. Phys., 328 (2014), 545-571.  doi: 10.1007/s00220-014-1981-5.  Google Scholar

[16]

E. Mainini, H. Murakawa, P. Piovano and U. Stefanelli, Carbon-nanotube Geometries as Optimal Configurations preprint, 2016. Google Scholar

[17]

L. Shen and J. Li, Transversely isotropic elastic properties of single-walled carbon nanotubes, Phys. Rev. B, 69 (2004), 045414, Erratum Phys. Rev. B 81 (2010), 119902. doi: 10.1103/PhysRevB. 69. 045414.  Google Scholar

[18]

L. Shen and J. Li, Equilibrium structure and strain energy of single-walled carbon nanotubes, Phys. Rev. B, 71 (2005), 165427.  doi: 10.1103/PhysRevB.71.165427.  Google Scholar

[19]

F. H. Stillinger and T. A. Weber, Computer simulation of local order in condensed phases of silicon, Phys. Rev. B, 8 (1985), 5262-5271.  doi: 10.1103/PhysRevB.31.5262.  Google Scholar

[20]

J. Tersoff, New empirical approach for the structure and energy of covalent systems, Phys. Rev. B, 37 (1988), 6991-7000.  doi: 10.1103/PhysRevB.37.6991.  Google Scholar

[21]

M. M. J. TreacyT. W. Ebbesen and J. M. Gibson, Exceptionally high Young's modulus observed for individual carbon nanotubes, Nature, 381 (1996), 678-680.  doi: 10.1038/381678a0.  Google Scholar

[22]

M.-F. YuB. S. FilesS. Arepalli and R. S. Ruoff, Tensile Loading of Ropes of Single Wall Carbon Nanotubes and their Mechanical Properties, Phys. Rev. Lett., 84 (2000), 5552-5555.  doi: 10.1103/PhysRevLett.84.5552.  Google Scholar

[23]

T. ZhangZ. S. Yuan and L. H. Tan, Exact geometric relationships, symmetry breaking and structural stability for single-walled carbon nanotubes, Nano-Micro Lett., 3 (2011), 28-235.  doi: 10.1007/BF03353677.  Google Scholar

[24]

X. ZhaoY. LiuS. InoueR. O. Jones and Y. Ando, Smallest carbon nanotibe is 3Å in diameter, Phys. Rev. Lett., 92 (2004), 125502.  doi: 10.1007/BF03353677.  Google Scholar

show all references

References:
[1]

P. M. AgrawalB. S. SudalayandiL. M. Raff and R. Komandur, Molecular dynamics (MD) simulations of the dependence of C-C bond lengths and bond angles on the tensile strain in single-wall carbon nanotubes (SWCNT), Comp. Mat. Sci., 41 (2008), 450-456.  doi: 10.1016/j.commatsci.2007.05.001.  Google Scholar

[2]

M. E. BudykaT. S. ZyubinaA. G. RyabenkoS. H. Lin and A. M. Mebel, Bond lengths and diameters of armchair single-walled carbon nanotubes, Chem. Phys. Lett., 407 (2005), 266-271.   Google Scholar

[3]

B. J. Cox and J. M. Hill, Exact and approximate geometric parameters for carbon nanotubes incorporating curvature, Carbon, 45 (2007), 1453-1462.  doi: 10.1016/j.carbon.2007.03.028.  Google Scholar

[4]

M. S. DresselhausG. Dresselhaus and R. Saito, Carbon fibers based on C60 ad their symmetry, Phys. Rev. B, 45 (1992), 6234-6242.   Google Scholar

[5]

M. S. DresselhausG. Dresselhaus and R. Saito, Physics of carbon nanotubes, Carbon Nanotubes, (1996), 27-35.  doi: 10.1016/B978-0-08-042682-2.50009-6.  Google Scholar

[6]

W. E and D. Li, On the crystallization of 2D hexagonal lattices, Comm. Math. Phys., 286 (2009), 1099-1140.  doi: 10.1007/s00220-008-0586-2.  Google Scholar

[7]

R. D. James, Objective structures, J. Mech. Phys. Solids, 54 (2006), 2354-2390.  doi: 10.1016/j.jmps.2006.05.008.  Google Scholar

[8]

H. JiangP. ZhangB. LiuY. HuansP. H. GeubelleH. Gao and K. C. Hwang, The effect of nanotube radius on the constitutive model for carbon nanotubes, Comp. Mat. Sci., 28 (2003), 429-442.  doi: 10.1016/j.commatsci.2003.08.004.  Google Scholar

[9]

V. K. Jindal and A. N. Imtani, Bond lengths of armchair single-walled carbon nanotubes and their pressure dependence, Comp. Mat. Sci., 44 (2008), 156-162.   Google Scholar

[10]

R. A. JishiM. S. Dresselhaus and G. Dresselhaus, Symmetry properties and chiral carbon nanotubes, Phys. Rev. B, 47 (1993), 166671-166674.   Google Scholar

[11]

K. Kanamits and S. Saito, Geometries, electronic properties, and energetics of isolated single-walled carbon nanotubes, J. Phys. Soc. Japan, 71 (2002), 483-486.  doi: 10.1143/JPSJ.71.483.  Google Scholar

[12]

A. KrishnanE. DujardinT. W. EbbesenP. N. Yianilos and M. M. J. Treacy, Young's modulus of single-walled nanotubes, Phys. Rev. B, 58 (1998), 14013-14019.  doi: 10.1103/PhysRevB.58.14013.  Google Scholar

[13]

J. KurtiV. ZolyomiM. Kertesz and G. Sun, The geometry and the radial breathing model of carbon nanotubes: Beyond the ideal behaviour, New J. Phys., 5 (2003), 1-21.   Google Scholar

[14]

R. K. F. LeeB. J. Cox and J. M. Hill, General rolled-up and polyhedral models for carbon nanotubes, Fullerenes, Nanotubes and Carbon Nanostructures, 19 (2011), 726-748.  doi: 10.1080/1536383X.2010.494786.  Google Scholar

[15]

E. Mainini and U. Stefanelli, Crystallization in carbon nanostructures, Comm. Math. Phys., 328 (2014), 545-571.  doi: 10.1007/s00220-014-1981-5.  Google Scholar

[16]

E. Mainini, H. Murakawa, P. Piovano and U. Stefanelli, Carbon-nanotube Geometries as Optimal Configurations preprint, 2016. Google Scholar

[17]

L. Shen and J. Li, Transversely isotropic elastic properties of single-walled carbon nanotubes, Phys. Rev. B, 69 (2004), 045414, Erratum Phys. Rev. B 81 (2010), 119902. doi: 10.1103/PhysRevB. 69. 045414.  Google Scholar

[18]

L. Shen and J. Li, Equilibrium structure and strain energy of single-walled carbon nanotubes, Phys. Rev. B, 71 (2005), 165427.  doi: 10.1103/PhysRevB.71.165427.  Google Scholar

[19]

F. H. Stillinger and T. A. Weber, Computer simulation of local order in condensed phases of silicon, Phys. Rev. B, 8 (1985), 5262-5271.  doi: 10.1103/PhysRevB.31.5262.  Google Scholar

[20]

J. Tersoff, New empirical approach for the structure and energy of covalent systems, Phys. Rev. B, 37 (1988), 6991-7000.  doi: 10.1103/PhysRevB.37.6991.  Google Scholar

[21]

M. M. J. TreacyT. W. Ebbesen and J. M. Gibson, Exceptionally high Young's modulus observed for individual carbon nanotubes, Nature, 381 (1996), 678-680.  doi: 10.1038/381678a0.  Google Scholar

[22]

M.-F. YuB. S. FilesS. Arepalli and R. S. Ruoff, Tensile Loading of Ropes of Single Wall Carbon Nanotubes and their Mechanical Properties, Phys. Rev. Lett., 84 (2000), 5552-5555.  doi: 10.1103/PhysRevLett.84.5552.  Google Scholar

[23]

T. ZhangZ. S. Yuan and L. H. Tan, Exact geometric relationships, symmetry breaking and structural stability for single-walled carbon nanotubes, Nano-Micro Lett., 3 (2011), 28-235.  doi: 10.1007/BF03353677.  Google Scholar

[24]

X. ZhaoY. LiuS. InoueR. O. Jones and Y. Ando, Smallest carbon nanotibe is 3Å in diameter, Phys. Rev. Lett., 92 (2004), 125502.  doi: 10.1007/BF03353677.  Google Scholar

Figure 1.  Rolling-up of nanotubes from a graphene sheet
Figure 2.  Notation for bonds and bond angles
Figure 3.  Zigzag nanotube
Figure 4.  The construction of the function $\beta_z$
Figure 5.  The angle $\beta_z$ as a function of the angle $\alpha$ (above) and a zoom (below) with the points $(\alpha^{\rm ru}_z,\beta_z(\alpha^{\rm ru}_z))$ and $(\alpha^{\rm ch}_z,\beta_z(\alpha^{\rm ch}_z))$ for $\ell=10$
Figure 6.  The angle $\beta_a$ as a function of the angle $\alpha$ (above) and a zoom (below) with the points $(\alpha^{\rm ru}_a,\beta_a(\alpha^{\rm ru}_a))$ and $(\alpha^{\rm ch}_a,\beta_a(\alpha^{\rm ch}_a))$ for $\ell=10$
Figure 7.  The energy-per-particle $\widehat E_i$ in the zigzag (above) and in the armchair (below) family, as a function of the angle $\alpha$ for $\ell=10$, together with a zoom about the minimum
Figure 8.  Comparison between energies of the optimal configurations and energies of their perturbations in the cases Z1, Z2, Z3 (left, from the top) and A1, A2, A3 (right, from the top). The marker corresponds to the optimal configuration $\mathcal{F}_i^*$ and value $\alpha$ represents the mean of all $\alpha$-angles in the configuration
Figure 9.  Optimality of the configuration $(F^*_L,L)\in \mathscr{F}_z$ (bottom point) for all given $L$ in a neighborhood of $L^*$
Figure 10.  Elastic response of the nanotube Z1 under uniaxial small (left) and large displacements (right). The function $L \mapsto E(F_L^*,L)$ (bottom) corresponds to the lower envelope of the random evaluations (top)
[1]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[2]

Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020275

[3]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[4]

Andrew D. Lewis. Erratum for "nonholonomic and constrained variational mechanics". Journal of Geometric Mechanics, 2020, 12 (4) : 671-675. doi: 10.3934/jgm.2020033

[5]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[6]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[7]

Yahia Zare Mehrjerdi. A new methodology for solving bi-criterion fractional stochastic programming. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020054

[8]

Shipra Singh, Aviv Gibali, Xiaolong Qin. Cooperation in traffic network problems via evolutionary split variational inequalities. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020170

[9]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020268

[10]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[11]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[12]

Reza Lotfi, Zahra Yadegari, Seyed Hossein Hosseini, Amir Hossein Khameneh, Erfan Babaee Tirkolaee, Gerhard-Wilhelm Weber. A robust time-cost-quality-energy-environment trade-off with resource-constrained in project management: A case study for a bridge construction project. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020158

[13]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[14]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[15]

Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020464

[16]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[17]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[18]

Yining Cao, Chuck Jia, Roger Temam, Joseph Tribbia. Mathematical analysis of a cloud resolving model including the ice microphysics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 131-167. doi: 10.3934/dcds.2020219

[19]

Zhouchao Wei, Wei Zhang, Irene Moroz, Nikolay V. Kuznetsov. Codimension one and two bifurcations in Cattaneo-Christov heat flux model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020344

[20]

Shuang Chen, Jinqiao Duan, Ji Li. Effective reduction of a three-dimensional circadian oscillator model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020349

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (66)
  • HTML views (165)
  • Cited by (2)

[Back to Top]