April  2017, 10(2): 213-240. doi: 10.3934/dcdss.2017011

A survey of complex dimensions, measurability, and the lattice/nonlattice dichotomy

1. 

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

2. 

Department of Mathematics and Statistics, California State Polytechnic University, Pomona, CA 91768, USA

3. 

Department of Mathematics, University of California, Riverside, CA 92521, USA

* Corresponding author:John A. Rock.

Received  October 2015 Revised  November 2016 Published  January 2017

Fund Project: The authors Dettmers, Giza, and Rock were supported by NSF grant DMS-1247679.

The theory of complex dimensions of fractal strings developed by Lapidus and van Frankenhuijsen has proven to be a powerful tool for the study of Minkowski measurability of fractal subsets of the real line. In a very general setting, the Minkowski measurability of such sets is characterized by the structure of corresponding complex dimensions. Also, this tool is particularly effective in the setting of self-similar fractal subsets of $\mathbb{R}$ which have been shown to be Minkowski measurable if and only if they are nonlattice. This paper features a survey on the pertinent results of Lapidus and van Frankenhuijsen and a preliminary extension of the theory of complex dimensions to subsets of Euclidean space, with an emphasis on self-similar sets that satisfy various separation conditions. This extension is developed in the context of box-counting measurability, an analog of Minkowski measurability, which is shown to be characterized by complex dimensions under certain mild conditions.

Citation: Kristin Dettmers, Robert Giza, Rafael Morales, John A. Rock, Christina Knox. A survey of complex dimensions, measurability, and the lattice/nonlattice dichotomy. Discrete and Continuous Dynamical Systems - S, 2017, 10 (2) : 213-240. doi: 10.3934/dcdss.2017011
References:
[1]

M. Barnsley, Fractals Everywhere -Mathematical Foundations and Applications, $2^{nd}$ edition, Ⅲ. Academic Press Professional, Boston, MA, 1993.

[2]

K. J. Falconer, On the Minkowski measurability of fractals, Proc. Amer. Math. Soc. , 123 (1995), 1115-1124. doi: 10.1090/S0002-9939-1995-1224615-4.

[3]

K. Falconer, Fractal Geometry -Mathematical Foundations and Applications, $3^{rd}$ edition, John Wiley, Chichester, 2014.

[4]

H. Federer, Geometric Measure Theory Springer-Verlag, New York, 1969.

[5]

P. M. Fitzpatrick and H. L. Royden, Real Analysis $4^{th}$ edition, Pearson, 2010.

[6]

D. Gatzouras, Lacunarity of self-similar and stochastically self-similar sets, Trans. Amer. Math. Soc., 352 (2000), 1953-1983.  doi: 10.1090/S0002-9947-99-02539-8.

[7]

J. E. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J., 30 (1981), 713-747.  doi: 10.1512/iumj.1981.30.30055.

[8]

S. Kombrink, Fractal Curvature Measures and Minkowski Content for Limit Sets of Conformal Function Systems Ph. D. thesis, Universität Bremen, 2011.

[9]

S. P. Lalley, The packing and covering functions of some self-similar fractals, Indiana Univ. Math. J., 37 (1988), 699-710.  doi: 10.1512/iumj.1988.37.37034.

[10]

S. P. Lalley, Renewal theorems in symbolic dynamics, with applications to geodesic flows, non-Euclidean tessellations and their fractal limits, Acta Math., 163 (1989), 1-55.  doi: 10.1007/BF02392732.

[11]

M. L. Lapidus and H. Maier, The Riemann hypothesis and inverse spectral problems for fractal strings, J. London Math. Soc. 52 (1995), 15-34. doi: 10.1112/jlms/52.1.15.

[12]

M. L. Lapidus, E. P. J. Pearse and S. Winter, Pointwise tube formulas for fractal sprays and self-similar tilings with arbitrary generators, Adv. in Math. , 227 (2011), 1349-1398. (Also: E-print, arXiv: 1006.3807v3, [math. MG], 2011. ) doi: 10.1016/j.aim.2011.03.004.

[13]

M. L. Lapidus, E. P. J. Pearse and S. Winter, Minkowski measurability results for self-similar tilings and fractals with monophase generators, in Fractal Geometry and Dynamical Systems in Pure and Applied Mathematics (eds. D. Carfi, M. L. Lapidus, E. P. J. Pearse, and M. van Frankenhuijsen), Contemporary Mathematics, Amer. Math. Soc. , 600 (2013), 185-203. doi: 10.1090/conm/600/11951.

[14]

M. L. Lapidus and C. Pomerance, The Riemann zeta-function and the one-dimensional Weyl-Berry conjecture for fractal drums, Proc. London Math. Soc. (3), 66 (1993), 41-69.  doi: 10.1112/plms/s3-66.1.41.

[15]

M. L. LapidusG. Radunović and D. Žubrinić, Fractal zeta functions and complex dimensions of relative fractal drums, J. Fixed Point Theory Appl., 15 (2014), 321-378.  doi: 10.1007/s11784-014-0207-y.

[16]

M. L. Lapidus, J. A. Rock and D. Žubrinić, Box-counting fractal strings, zeta functions, and equivalent forms of Minkowski dimension, in Fractal Geometry and Dynamical Systems in Pure and Applied Mathematics (eds. D. Carfi, M. L. Lapidus, E. P. J. Pearse, and M. van Frankenhuijsen), Contemporary Mathematics, Amer. Math. Soc. , 600 (2013), 239-271. doi: 10.1090/conm/600/11929.

[17]

M. L. Lapidus and M. van Frankenhuijsen, Fractal Geometry, Complex Dimensions and Zeta Functions: Geometry and Spectra of Fractal Strings $2^{nd}$ edition, Springer, New York, 2013. doi: 10.1007/978-1-4614-2176-4.

[18]

R. Morales, Complex Dimensions and Measurability Master's thesis, California State Polytechnic University, Pomona, 2014.

[19]

J. Rataj and S. Winter, Characterization of Minkowski measurability in terms of surface area, J. Math. Anal. Appl., 400 (2013), 120-132.  doi: 10.1016/j.jmaa.2012.10.059.

[20]

C. Sargent, Box Counting Zeta Functions of Self-Similar Sets Master's thesis, California State Polytechnic University, Pomona, 2014.

[21]

A. Schief, Separation properties for self-similar sets, Proc. Amer. Math. Soc., 122 (1994), 111-115.  doi: 10.1090/S0002-9939-1994-1191872-1.

[22]

J. -P. Serre, A Course in Arithmetic English translation, Springer-Verlag, Berlin, 1973.

show all references

References:
[1]

M. Barnsley, Fractals Everywhere -Mathematical Foundations and Applications, $2^{nd}$ edition, Ⅲ. Academic Press Professional, Boston, MA, 1993.

[2]

K. J. Falconer, On the Minkowski measurability of fractals, Proc. Amer. Math. Soc. , 123 (1995), 1115-1124. doi: 10.1090/S0002-9939-1995-1224615-4.

[3]

K. Falconer, Fractal Geometry -Mathematical Foundations and Applications, $3^{rd}$ edition, John Wiley, Chichester, 2014.

[4]

H. Federer, Geometric Measure Theory Springer-Verlag, New York, 1969.

[5]

P. M. Fitzpatrick and H. L. Royden, Real Analysis $4^{th}$ edition, Pearson, 2010.

[6]

D. Gatzouras, Lacunarity of self-similar and stochastically self-similar sets, Trans. Amer. Math. Soc., 352 (2000), 1953-1983.  doi: 10.1090/S0002-9947-99-02539-8.

[7]

J. E. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J., 30 (1981), 713-747.  doi: 10.1512/iumj.1981.30.30055.

[8]

S. Kombrink, Fractal Curvature Measures and Minkowski Content for Limit Sets of Conformal Function Systems Ph. D. thesis, Universität Bremen, 2011.

[9]

S. P. Lalley, The packing and covering functions of some self-similar fractals, Indiana Univ. Math. J., 37 (1988), 699-710.  doi: 10.1512/iumj.1988.37.37034.

[10]

S. P. Lalley, Renewal theorems in symbolic dynamics, with applications to geodesic flows, non-Euclidean tessellations and their fractal limits, Acta Math., 163 (1989), 1-55.  doi: 10.1007/BF02392732.

[11]

M. L. Lapidus and H. Maier, The Riemann hypothesis and inverse spectral problems for fractal strings, J. London Math. Soc. 52 (1995), 15-34. doi: 10.1112/jlms/52.1.15.

[12]

M. L. Lapidus, E. P. J. Pearse and S. Winter, Pointwise tube formulas for fractal sprays and self-similar tilings with arbitrary generators, Adv. in Math. , 227 (2011), 1349-1398. (Also: E-print, arXiv: 1006.3807v3, [math. MG], 2011. ) doi: 10.1016/j.aim.2011.03.004.

[13]

M. L. Lapidus, E. P. J. Pearse and S. Winter, Minkowski measurability results for self-similar tilings and fractals with monophase generators, in Fractal Geometry and Dynamical Systems in Pure and Applied Mathematics (eds. D. Carfi, M. L. Lapidus, E. P. J. Pearse, and M. van Frankenhuijsen), Contemporary Mathematics, Amer. Math. Soc. , 600 (2013), 185-203. doi: 10.1090/conm/600/11951.

[14]

M. L. Lapidus and C. Pomerance, The Riemann zeta-function and the one-dimensional Weyl-Berry conjecture for fractal drums, Proc. London Math. Soc. (3), 66 (1993), 41-69.  doi: 10.1112/plms/s3-66.1.41.

[15]

M. L. LapidusG. Radunović and D. Žubrinić, Fractal zeta functions and complex dimensions of relative fractal drums, J. Fixed Point Theory Appl., 15 (2014), 321-378.  doi: 10.1007/s11784-014-0207-y.

[16]

M. L. Lapidus, J. A. Rock and D. Žubrinić, Box-counting fractal strings, zeta functions, and equivalent forms of Minkowski dimension, in Fractal Geometry and Dynamical Systems in Pure and Applied Mathematics (eds. D. Carfi, M. L. Lapidus, E. P. J. Pearse, and M. van Frankenhuijsen), Contemporary Mathematics, Amer. Math. Soc. , 600 (2013), 239-271. doi: 10.1090/conm/600/11929.

[17]

M. L. Lapidus and M. van Frankenhuijsen, Fractal Geometry, Complex Dimensions and Zeta Functions: Geometry and Spectra of Fractal Strings $2^{nd}$ edition, Springer, New York, 2013. doi: 10.1007/978-1-4614-2176-4.

[18]

R. Morales, Complex Dimensions and Measurability Master's thesis, California State Polytechnic University, Pomona, 2014.

[19]

J. Rataj and S. Winter, Characterization of Minkowski measurability in terms of surface area, J. Math. Anal. Appl., 400 (2013), 120-132.  doi: 10.1016/j.jmaa.2012.10.059.

[20]

C. Sargent, Box Counting Zeta Functions of Self-Similar Sets Master's thesis, California State Polytechnic University, Pomona, 2014.

[21]

A. Schief, Separation properties for self-similar sets, Proc. Amer. Math. Soc., 122 (1994), 111-115.  doi: 10.1090/S0002-9939-1994-1191872-1.

[22]

J. -P. Serre, A Course in Arithmetic English translation, Springer-Verlag, Berlin, 1973.

Figure 1.  On the left, an approximation of the Sierpiński gasket $S_G$ discussed in Example 2.14. On the right, an approximation of the Quarter Fractal $Q$ discussed in Example 2.15.
Figure 3.  A lattice approximation of $\mathcal{D}_{\mathcal{L}_\phi}$, the complex dimensions of the Golden string $\Omega_\phi$ with lengths $\mathcal{L}_\phi$. The plots show the complex dimensions $\mathcal{D}_M=\{z \in{\mathbb{C}}: 2^{-z} + 2^{-z\phi_M} = 1\}$ where $\phi_M=f_{M+1}/f_M$ approximates $\phi$ for $M=2,\ldots,9$. In each case, the point $D$ denotes the Minkowski dimension of the approximating attractor, and the figure repeats with period $\mathbf{p}$. Note, however, that $\mathcal{D}_{\mathcal{L}_\phi}$ itself is not periodic. See Examples 2.13, 2.32, and 3.23 as well as Theorem 3.25 and Remark 3.28.
Figure 2.  The geometric oscillations of the Cantor string $\Omega_{CS}$ seen in the plot and semilog plot of $N_{CS}(x)/x^{D}$, on the left and right, respectively. Here, $N_{CS}$ is the geometric counting function of the Cantor string and $D=\dim_BC=\log_32$. See Example 3.18. (The function is discontinuous, the vertical line segments are an artifact of the program used to generate the images.)
[1]

Hillel Furstenberg. From invariance to self-similarity: The work of Michael Hochman on fractal dimension and its aftermath. Journal of Modern Dynamics, 2019, 15: 437-449. doi: 10.3934/jmd.2019027

[2]

Kanji Inui, Hikaru Okada, Hiroki Sumi. The Hausdorff dimension function of the family of conformal iterated function systems of generalized complex continued fractions. Discrete and Continuous Dynamical Systems, 2020, 40 (2) : 753-766. doi: 10.3934/dcds.2020060

[3]

Lana Horvat Dmitrović. Box dimension and bifurcations of one-dimensional discrete dynamical systems. Discrete and Continuous Dynamical Systems, 2012, 32 (4) : 1287-1307. doi: 10.3934/dcds.2012.32.1287

[4]

Shmuel Friedland, Gunter Ochs. Hausdorff dimension, strong hyperbolicity and complex dynamics. Discrete and Continuous Dynamical Systems, 1998, 4 (3) : 405-430. doi: 10.3934/dcds.1998.4.405

[5]

Luc Robbiano. Counting function for interior transmission eigenvalues. Mathematical Control and Related Fields, 2016, 6 (1) : 167-183. doi: 10.3934/mcrf.2016.6.167

[6]

Dmitry Kleinbock, Xi Zhao. An application of lattice points counting to shrinking target problems. Discrete and Continuous Dynamical Systems, 2018, 38 (1) : 155-168. doi: 10.3934/dcds.2018007

[7]

Manuel Fernández-Martínez, Miguel Ángel López Guerrero. Generating pre-fractals to approach real IFS-attractors with a fixed Hausdorff dimension. Discrete and Continuous Dynamical Systems - S, 2015, 8 (6) : 1129-1137. doi: 10.3934/dcdss.2015.8.1129

[8]

Markus Böhm, Björn Schmalfuss. Bounds on the Hausdorff dimension of random attractors for infinite-dimensional random dynamical systems on fractals. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 3115-3138. doi: 10.3934/dcdsb.2018303

[9]

M. Fernández-Martínez, Yolanda Guerrero-Sánchez, Pía López-Jornet. A novel approach to improve the accuracy of the box dimension calculations: Applications to trabecular bone quality. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1527-1534. doi: 10.3934/dcdss.2019105

[10]

Giovanni Panti. Billiards on pythagorean triples and their Minkowski functions. Discrete and Continuous Dynamical Systems, 2020, 40 (7) : 4341-4378. doi: 10.3934/dcds.2020183

[11]

Krzysztof Barański. Hausdorff dimension of self-affine limit sets with an invariant direction. Discrete and Continuous Dynamical Systems, 2008, 21 (4) : 1015-1023. doi: 10.3934/dcds.2008.21.1015

[12]

Thomas Jordan, Mark Pollicott. The Hausdorff dimension of measures for iterated function systems which contract on average. Discrete and Continuous Dynamical Systems, 2008, 22 (1&2) : 235-246. doi: 10.3934/dcds.2008.22.235

[13]

Qiao Liu. Partial regularity and the Minkowski dimension of singular points for suitable weak solutions to the 3D simplified Ericksen–Leslie system. Discrete and Continuous Dynamical Systems, 2021, 41 (9) : 4397-4419. doi: 10.3934/dcds.2021041

[14]

Sara Munday. On the derivative of the $\alpha$-Farey-Minkowski function. Discrete and Continuous Dynamical Systems, 2014, 34 (2) : 709-732. doi: 10.3934/dcds.2014.34.709

[15]

Michel L. Lapidus, Goran Radunović, Darko Žubrinić. Fractal tube formulas and a Minkowski measurability criterion for compact subsets of Euclidean spaces. Discrete and Continuous Dynamical Systems - S, 2019, 12 (1) : 105-117. doi: 10.3934/dcdss.2019007

[16]

Meng Ding, Ting-Zhu Huang, Xi-Le Zhao, Michael K. Ng, Tian-Hui Ma. Tensor train rank minimization with nonlocal self-similarity for tensor completion. Inverse Problems and Imaging, 2021, 15 (3) : 475-498. doi: 10.3934/ipi.2021001

[17]

Rogelio Valdez. Self-similarity of the Mandelbrot set for real essentially bounded combinatorics. Discrete and Continuous Dynamical Systems, 2006, 16 (4) : 897-922. doi: 10.3934/dcds.2006.16.897

[18]

Michael L. Frankel, Victor Roytburd. Fractal dimension of attractors for a Stefan problem. Conference Publications, 2003, 2003 (Special) : 281-287. doi: 10.3934/proc.2003.2003.281

[19]

Marat Akhmet, Ejaily Milad Alejaily. Abstract similarity, fractals and chaos. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2479-2497. doi: 10.3934/dcdsb.2020191

[20]

David Colton, Rainer Kress. Thirty years and still counting. Inverse Problems and Imaging, 2009, 3 (2) : 151-153. doi: 10.3934/ipi.2009.3.151

2021 Impact Factor: 1.865

Metrics

  • PDF downloads (186)
  • HTML views (160)
  • Cited by (0)

[Back to Top]