April  2017, 10(2): 289-311. doi: 10.3934/dcdss.2017014

A family of self-avoiding random walks interpolating the loop-erased random walk and a self-avoiding walk on the Sierpiński gasket

Department of Mathematics and Information Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan

* Corresponding author:Kumiko Hattori

Received  October 2015 Revised  November 2016 Published  January 2017

We show that the ‘erasing-larger-loops-first’ (ELLF) method, which was first introduced for erasing loops from the simple random walk on the Sierpiński gasket, does work also for non-Markov random walks, in particular, self-repelling walks to construct a new family of self-avoiding walks on the Sierpiński gasket. The one-parameter family constructed in this method continuously connects the loop-erased random walk and a self-avoiding walk which has the same asymptotic behavior as the ‘standard’ self-avoiding walk. We prove the existence of the scaling limit and study some path properties: The exponent $ν$ governing the short-time behavior of the scaling limit varies continuously in the parameter. The limit process is almost surely self-avoiding, while it has path Hausdorff dimension $1/ν $, which is strictly greater than $1$.

Citation: Kumiko Hattori, Noriaki Ogo, Takafumi Otsuka. A family of self-avoiding random walks interpolating the loop-erased random walk and a self-avoiding walk on the Sierpiński gasket. Discrete & Continuous Dynamical Systems - S, 2017, 10 (2) : 289-311. doi: 10.3934/dcdss.2017014
References:
[1]

K. B. Athreya and P. E. Ney, Branching Processes Springer, 1972. Google Scholar

[2]

M. T. Barlow and E. A. Perkins, Brownian motion on the Sierpinski gasket, Probab. Theory Relat. Fields, 79 (1988), 543-623. doi: 10.1007/BF00318785. Google Scholar

[3]

B. HamblyK. Hattori and T. Hattori, Self-repelling walk on the Sierpiński gasket, Probab. Theory Relat. Fields, 124 (2002), 1-25. doi: 10.1007/s004400100192. Google Scholar

[4]

K. Hattori, Fractal geometry of self-avoiding processes, J. Math. Sci. Univ. Tokyo, 3 (1996), 379-397. Google Scholar

[5]

T. Hattori, Random Walks and Renormalization Group Kyoritsu Publishing (in Japanese).Google Scholar

[6]

K. Hattori and T. Hattori, Self-avoiding process on the Sierpinski gasket, Probab. Theory Relat. Fields, 88 (1991), 405-428. doi: 10.1007/BF01192550. Google Scholar

[7]

K. Hattori and T. Hattori, Displacement exponent of self-repelling walks and self-attracting walks on the Sierpinski gasket, J. Math. Sci. Univ. Tokyo, 12 (2005), 417-443. Google Scholar

[8]

K. HattoriT. Hattori and S. Kusuoka, Self-avoiding paths on the pre-Sierpinski gasket, Probab. Theory Relat. Fields, 84 (1990), 1-26. doi: 10.1007/BF01288555. Google Scholar

[9]

K. HattoriT. Hattori and S. Kusuoka, Self-avoiding paths on the three-dimensional Sierpinski gasket, Publ. RIMS, 29 (1993), 455-509. doi: 10.2977/prims/1195167053. Google Scholar

[10]

T. Hattori and S. Kusuoka, The exponent for mean square displacement of self-avoiding random walk on Sierpinski gasket, Probab. Theory Relat. Fields, 93 (1992), 273-284. doi: 10.1007/BF01193052. Google Scholar

[11]

K. Hattori and M. Mizuno, Loop-erased random walk on the Sierpinski gasket, Stoch. Process. Appl., 124 (2014), 566-585. doi: 10.1016/j.spa.2013.08.006. Google Scholar

[12]

R. van der Hofstad and W. König, A survey of one-dimensional random polymers, J. Stat. Phys., 103 (2001), 915-944. doi: 10.1023/A:1010309005541. Google Scholar

[13]

O. D. Jones, Large deviations for supercritical multitype branching processes, J. Appl. Prob., 41 (2004), 703-720. doi: 10.1017/S0021900200020490. Google Scholar

[14]

G. Kozma, The scaling limit of loop-erased random walk in three dimensions, Acta Math., 199 (2007), 29-152. doi: 10.1007/s11511-007-0018-8. Google Scholar

[15]

T. Kumagai, Construction and some properties of a class of non-symmetric diffusion processes on the Sierpinski gasket, Asymptotic problems in probability theory: Stochastic models and diffusions on fractals (Sanda/Kyoto, 1990), Pitman Res. Notes Math. Ser. , Longman Sci. Texh. , Harlow, 283 (1980), 219–247. Google Scholar

[16]

G. F. Lawler, A self-avoiding random walk, Duke Math. J., 47 (1980), 655-693. doi: 10.1215/S0012-7094-80-04741-9. Google Scholar

[17]

G. F. Lawler, The logarithmic correction for loop-erased walk in four dimensions, J. Fourier Anal. Appl., (1995), 347-361. Google Scholar

[18]

G. F. LawlerO. Schramm and W. Werner, Conformal invariance of planar loop-erased random walks and uniform spanning trees, Ann. Probab., 32 (2004), 939-995. doi: 10.1214/aop/1079021469. Google Scholar

[19]

N. Madras and G. Slade, The Self-avoiding Walk Birkhäuser, 1993. Google Scholar

[20]

O. Schramm, Scaling limits of loop-erased random walks and uniform spanning trees, Israel J. Math. , 118 (2000), 221–288. doi: 10.1007/BF02803524. Google Scholar

[21]

M. ShinodaE. Teufl and S. Wagner, Uniform spanning trees on Sierpiński graphs, Lat. Am. J. Probab. Math. Stat., 11 (2014), 737-780. Google Scholar

show all references

References:
[1]

K. B. Athreya and P. E. Ney, Branching Processes Springer, 1972. Google Scholar

[2]

M. T. Barlow and E. A. Perkins, Brownian motion on the Sierpinski gasket, Probab. Theory Relat. Fields, 79 (1988), 543-623. doi: 10.1007/BF00318785. Google Scholar

[3]

B. HamblyK. Hattori and T. Hattori, Self-repelling walk on the Sierpiński gasket, Probab. Theory Relat. Fields, 124 (2002), 1-25. doi: 10.1007/s004400100192. Google Scholar

[4]

K. Hattori, Fractal geometry of self-avoiding processes, J. Math. Sci. Univ. Tokyo, 3 (1996), 379-397. Google Scholar

[5]

T. Hattori, Random Walks and Renormalization Group Kyoritsu Publishing (in Japanese).Google Scholar

[6]

K. Hattori and T. Hattori, Self-avoiding process on the Sierpinski gasket, Probab. Theory Relat. Fields, 88 (1991), 405-428. doi: 10.1007/BF01192550. Google Scholar

[7]

K. Hattori and T. Hattori, Displacement exponent of self-repelling walks and self-attracting walks on the Sierpinski gasket, J. Math. Sci. Univ. Tokyo, 12 (2005), 417-443. Google Scholar

[8]

K. HattoriT. Hattori and S. Kusuoka, Self-avoiding paths on the pre-Sierpinski gasket, Probab. Theory Relat. Fields, 84 (1990), 1-26. doi: 10.1007/BF01288555. Google Scholar

[9]

K. HattoriT. Hattori and S. Kusuoka, Self-avoiding paths on the three-dimensional Sierpinski gasket, Publ. RIMS, 29 (1993), 455-509. doi: 10.2977/prims/1195167053. Google Scholar

[10]

T. Hattori and S. Kusuoka, The exponent for mean square displacement of self-avoiding random walk on Sierpinski gasket, Probab. Theory Relat. Fields, 93 (1992), 273-284. doi: 10.1007/BF01193052. Google Scholar

[11]

K. Hattori and M. Mizuno, Loop-erased random walk on the Sierpinski gasket, Stoch. Process. Appl., 124 (2014), 566-585. doi: 10.1016/j.spa.2013.08.006. Google Scholar

[12]

R. van der Hofstad and W. König, A survey of one-dimensional random polymers, J. Stat. Phys., 103 (2001), 915-944. doi: 10.1023/A:1010309005541. Google Scholar

[13]

O. D. Jones, Large deviations for supercritical multitype branching processes, J. Appl. Prob., 41 (2004), 703-720. doi: 10.1017/S0021900200020490. Google Scholar

[14]

G. Kozma, The scaling limit of loop-erased random walk in three dimensions, Acta Math., 199 (2007), 29-152. doi: 10.1007/s11511-007-0018-8. Google Scholar

[15]

T. Kumagai, Construction and some properties of a class of non-symmetric diffusion processes on the Sierpinski gasket, Asymptotic problems in probability theory: Stochastic models and diffusions on fractals (Sanda/Kyoto, 1990), Pitman Res. Notes Math. Ser. , Longman Sci. Texh. , Harlow, 283 (1980), 219–247. Google Scholar

[16]

G. F. Lawler, A self-avoiding random walk, Duke Math. J., 47 (1980), 655-693. doi: 10.1215/S0012-7094-80-04741-9. Google Scholar

[17]

G. F. Lawler, The logarithmic correction for loop-erased walk in four dimensions, J. Fourier Anal. Appl., (1995), 347-361. Google Scholar

[18]

G. F. LawlerO. Schramm and W. Werner, Conformal invariance of planar loop-erased random walks and uniform spanning trees, Ann. Probab., 32 (2004), 939-995. doi: 10.1214/aop/1079021469. Google Scholar

[19]

N. Madras and G. Slade, The Self-avoiding Walk Birkhäuser, 1993. Google Scholar

[20]

O. Schramm, Scaling limits of loop-erased random walks and uniform spanning trees, Israel J. Math. , 118 (2000), 221–288. doi: 10.1007/BF02803524. Google Scholar

[21]

M. ShinodaE. Teufl and S. Wagner, Uniform spanning trees on Sierpiński graphs, Lat. Am. J. Probab. Math. Stat., 11 (2014), 737-780. Google Scholar

Figure 1.  $F_3$
Figure 2.  $w, \tilde{w}, w_1, w_2, w_3$
Figure 3.  Loopless paths from $O$ to $a$ on $F_1$
Figure 4.  The loop-erasing procedure: (a) $w$, (b) $Q_1w$, (c) $LQ_1w=\hat{Q}_1w$, (d) $\tilde{L}w$
[1]

Wafa Hamrouni, Ali Abdennadher. Random walk's models for fractional diffusion equation. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2509-2530. doi: 10.3934/dcdsb.2016058

[2]

Edward Belbruno. Random walk in the three-body problem and applications. Discrete & Continuous Dynamical Systems - S, 2008, 1 (4) : 519-540. doi: 10.3934/dcdss.2008.1.519

[3]

Brendan Weickert. Infinite-dimensional complex dynamics: A quantum random walk. Discrete & Continuous Dynamical Systems - A, 2001, 7 (3) : 517-524. doi: 10.3934/dcds.2001.7.517

[4]

Luigi Ambrosio, Luis A. Caffarelli, A. Maugeri. Preface: A beautiful walk in the way of the understanding. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : i-vi. doi: 10.3934/dcds.2011.31.4i

[5]

Eric A. Carlen, Maria C. Carvalho, Amit Einav. Entropy production inequalities for the Kac Walk. Kinetic & Related Models, 2018, 11 (2) : 219-238. doi: 10.3934/krm.2018012

[6]

Michael L. Frankel, Victor Roytburd. Fractal dimension of attractors for a Stefan problem. Conference Publications, 2003, 2003 (Special) : 281-287. doi: 10.3934/proc.2003.2003.281

[7]

Shengfan Zhou, Min Zhao. Fractal dimension of random attractor for stochastic non-autonomous damped wave equation with linear multiplicative white noise. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2887-2914. doi: 10.3934/dcds.2016.36.2887

[8]

Krzysztof Barański. Hausdorff dimension of self-affine limit sets with an invariant direction. Discrete & Continuous Dynamical Systems - A, 2008, 21 (4) : 1015-1023. doi: 10.3934/dcds.2008.21.1015

[9]

Joseph Squillace. Estimating the fractal dimension of sets determined by nonergodic parameters. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5843-5859. doi: 10.3934/dcds.2017254

[10]

Jessica Hyde, Daniel Kelleher, Jesse Moeller, Luke Rogers, Luis Seda. Magnetic Laplacians of locally exact forms on the Sierpinski Gasket. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2299-2319. doi: 10.3934/cpaa.2017113

[11]

V. V. Chepyzhov, A. A. Ilyin. On the fractal dimension of invariant sets: Applications to Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 117-135. doi: 10.3934/dcds.2004.10.117

[12]

Manuel Fernández-Martínez. Theoretical properties of fractal dimensions for fractal structures. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1113-1128. doi: 10.3934/dcdss.2015.8.1113

[13]

Uta Renata Freiberg. Einstein relation on fractal objects. Discrete & Continuous Dynamical Systems - B, 2012, 17 (2) : 509-525. doi: 10.3934/dcdsb.2012.17.509

[14]

Umberto Mosco, Maria Agostina Vivaldi. Vanishing viscosity for fractal sets. Discrete & Continuous Dynamical Systems - A, 2010, 28 (3) : 1207-1235. doi: 10.3934/dcds.2010.28.1207

[15]

María Anguiano, Alain Haraux. The $\varepsilon$-entropy of some infinite dimensional compact ellipsoids and fractal dimension of attractors. Evolution Equations & Control Theory, 2017, 6 (3) : 345-356. doi: 10.3934/eect.2017018

[16]

Xian Zhang, Vinesh Nishawala, Martin Ostoja-Starzewski. Anti-plane shear Lamb's problem on random mass density fields with fractal and Hurst effects. Evolution Equations & Control Theory, 2019, 8 (1) : 231-246. doi: 10.3934/eect.2019013

[17]

Palle E. T. Jorgensen and Steen Pedersen. Orthogonal harmonic analysis of fractal measures. Electronic Research Announcements, 1998, 4: 35-42.

[18]

Guillaume Bal, Olivier Pinaud. Self-averaging of kinetic models for waves in random media. Kinetic & Related Models, 2008, 1 (1) : 85-100. doi: 10.3934/krm.2008.1.85

[19]

Michael Hochman. Lectures on dynamics, fractal geometry, and metric number theory. Journal of Modern Dynamics, 2014, 8 (3&4) : 437-497. doi: 10.3934/jmd.2014.8.437

[20]

Raffaela Capitanelli, Maria Agostina Vivaldi. Uniform weighted estimates on pre-fractal domains. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1969-1985. doi: 10.3934/dcdsb.2014.19.1969

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (14)
  • HTML views (76)
  • Cited by (0)

Other articles
by authors

[Back to Top]