We show that the ‘erasing-larger-loops-first’ (ELLF) method, which was first introduced for erasing loops from the simple random walk on the Sierpiński gasket, does work also for non-Markov random walks, in particular, self-repelling walks to construct a new family of self-avoiding walks on the Sierpiński gasket. The one-parameter family constructed in this method continuously connects the loop-erased random walk and a self-avoiding walk which has the same asymptotic behavior as the ‘standard’ self-avoiding walk. We prove the existence of the scaling limit and study some path properties: The exponent $ν$ governing the short-time behavior of the scaling limit varies continuously in the parameter. The limit process is almost surely self-avoiding, while it has path Hausdorff dimension $1/ν $, which is strictly greater than $1$.
Citation: |
K. B. Athreya and P. E. Ney,
Branching Processes Springer, 1972.
![]() ![]() |
|
M. T. Barlow
and E. A. Perkins
, Brownian motion on the Sierpinski gasket, Probab. Theory Relat. Fields, 79 (1988)
, 543-623.
doi: 10.1007/BF00318785.![]() ![]() ![]() |
|
B. Hambly
, K. Hattori
and T. Hattori
, Self-repelling walk on the Sierpiński gasket, Probab. Theory Relat. Fields, 124 (2002)
, 1-25.
doi: 10.1007/s004400100192.![]() ![]() ![]() |
|
K. Hattori
, Fractal geometry of self-avoiding processes, J. Math. Sci. Univ. Tokyo, 3 (1996)
, 379-397.
![]() ![]() |
|
T. Hattori,
Random Walks and Renormalization Group Kyoritsu Publishing (in Japanese).
![]() |
|
K. Hattori
and T. Hattori
, Self-avoiding process on the Sierpinski gasket, Probab. Theory Relat. Fields, 88 (1991)
, 405-428.
doi: 10.1007/BF01192550.![]() ![]() ![]() |
|
K. Hattori
and T. Hattori
, Displacement exponent of self-repelling walks and self-attracting walks on the Sierpinski gasket, J. Math. Sci. Univ. Tokyo, 12 (2005)
, 417-443.
![]() ![]() |
|
K. Hattori
, T. Hattori
and S. Kusuoka
, Self-avoiding paths on the pre-Sierpinski gasket, Probab. Theory Relat. Fields, 84 (1990)
, 1-26.
doi: 10.1007/BF01288555.![]() ![]() ![]() |
|
K. Hattori
, T. Hattori
and S. Kusuoka
, Self-avoiding paths on the three-dimensional Sierpinski gasket, Publ. RIMS, 29 (1993)
, 455-509.
doi: 10.2977/prims/1195167053.![]() ![]() ![]() |
|
T. Hattori
and S. Kusuoka
, The exponent for mean square displacement of self-avoiding random walk on Sierpinski gasket, Probab. Theory Relat. Fields, 93 (1992)
, 273-284.
doi: 10.1007/BF01193052.![]() ![]() ![]() |
|
K. Hattori
and M. Mizuno
, Loop-erased random walk on the Sierpinski gasket, Stoch. Process. Appl., 124 (2014)
, 566-585.
doi: 10.1016/j.spa.2013.08.006.![]() ![]() ![]() |
|
R. van der Hofstad
and W. König
, A survey of one-dimensional random polymers, J. Stat. Phys., 103 (2001)
, 915-944.
doi: 10.1023/A:1010309005541.![]() ![]() ![]() |
|
O. D. Jones
, Large deviations for supercritical multitype branching processes, J. Appl. Prob., 41 (2004)
, 703-720.
doi: 10.1017/S0021900200020490.![]() ![]() ![]() |
|
G. Kozma
, The scaling limit of loop-erased random walk in three dimensions, Acta Math., 199 (2007)
, 29-152.
doi: 10.1007/s11511-007-0018-8.![]() ![]() ![]() |
|
T. Kumagai, Construction and some properties of a class of non-symmetric diffusion processes on the Sierpinski gasket, Asymptotic problems in probability theory: Stochastic models and diffusions on fractals (Sanda/Kyoto, 1990), Pitman Res. Notes Math. Ser. , Longman Sci. Texh. , Harlow, 283 (1980), 219–247.
![]() ![]() |
|
G. F. Lawler
, A self-avoiding random walk, Duke Math. J., 47 (1980)
, 655-693.
doi: 10.1215/S0012-7094-80-04741-9.![]() ![]() ![]() |
|
G. F. Lawler
, The logarithmic correction for loop-erased walk in four dimensions, J. Fourier Anal. Appl., (1995)
, 347-361.
![]() ![]() |
|
G. F. Lawler
, O. Schramm
and W. Werner
, Conformal invariance of planar loop-erased random walks and uniform spanning trees, Ann. Probab., 32 (2004)
, 939-995.
doi: 10.1214/aop/1079021469.![]() ![]() ![]() |
|
N. Madras and G. Slade,
The Self-avoiding Walk Birkhäuser, 1993.
![]() ![]() |
|
O. Schramm, Scaling limits of loop-erased random walks and uniform spanning trees, Israel J. Math. , 118 (2000), 221–288.
doi: 10.1007/BF02803524.![]() ![]() ![]() |
|
M. Shinoda
, E. Teufl
and S. Wagner
, Uniform spanning trees on Sierpiński graphs, Lat. Am. J. Probab. Math. Stat., 11 (2014)
, 737-780.
![]() ![]() |
Loopless paths from
The loop-erasing procedure: (a)