We introduce notions of topological pressure for measurable potentials and prove corresponding variational principles. The formalism is then used to establish a Bowen formula for the Hausdorff dimension of cookie-cutters with discontinuous geometric potentials.
Citation: |
C. Aliprantis and K. Border,
Infinite Dimensional Analysis Third edition, Springer-Verlag, Berlin, 2006.
![]() ![]() |
|
J. Barral
and D.-J. Feng
, Weighted thermodynamic formalism on subshifts and applications, Asian J. Math., 16 (2012)
, 319-352.
doi: 10.4310/AJM.2012.v16.n2.a8.![]() ![]() ![]() |
|
M. Brin and A. Katok, On local entropy, Geometric dynamics (Rio de Janeiro, 1981), Lecture
Notes in Math. , Springer-Verlag, Berlin, 1007 (1983), 30–38.
doi: 10.1007/BFb0061408.![]() ![]() ![]() |
|
Y.-L. Cao
, D.-J. Feng
and W. Huang
, The thermodynamic formalism for sub-additive potentials, Discrete Contin. Dyn. Syst., 20 (2008)
, 639-657.
![]() ![]() |
|
J. Chen
and Ya. B. Pesin
, Dimension of non-conformal repellers: A survey, Nonlinearity, 23 (2010)
, R93-R114.
doi: 10.1088/0951-7715/23/4/R01.![]() ![]() ![]() |
|
V. Climenhaga
, Bowen's equation in the non-uniform setting, Ergodic Theory Dynam. Systems, 31 (2011)
, 1163-1182.
doi: 10.1017/S0143385710000362.![]() ![]() ![]() |
|
T. Downarowicz
and G. H. Zhang
, Modeling potential as fiber entropy and pressure as entropy, Ergodic Theory Dynam. Systems, 35 (2015)
, 1165-1186.
doi: 10.1017/etds.2013.95.![]() ![]() ![]() |
|
K. Falconer,
Fractal Geometry Second edition, Wiley, Chichester, 2003.
doi: 10.1002/0470013850.![]() ![]() ![]() |
|
K. Falconer,
Techniques in Fractal Geometry Wiley, Chichester, 1997.
![]() ![]() |
|
D.-J. Feng
and W. Huang
, Variational principles for topological entropies of subsets, J. Funct. Anal., 263 (2012)
, 2228-2254.
doi: 10.1016/j.jfa.2012.07.010.![]() ![]() ![]() |
|
D.-J. Feng
and W. Huang
, Variational principles for weighted topological pressure, J. Math. Pures Appl., 106 (2016)
, 411-452.
doi: 10.1016/j.matpur.2016.02.016.![]() ![]() ![]() |
|
F. Hofbauer
, The box dimension of completely invariant subsets for expanding piecewise monotonic transformations, Monatsh. Math., 121 (1996)
, 199-211.
doi: 10.1007/BF01298950.![]() ![]() ![]() |
|
G. Keller,
Equilibrium States in Ergodic Theory Cambridge University Press, Cambridge, 1998.
doi: 10.1017/CBO9781107359987.![]() ![]() ![]() |
|
A. Klenke,
Probability Theory First edition, Springer-Verlag, London, 2008.
doi: 10.1007/978-1-84800-048-3.![]() ![]() ![]() |
|
A. Mummert
, A variational principle for discontinuous potentials, Ergodic Theory Dynam. Systems, 27 (2007)
, 583-594.
doi: 10.1017/S0143385706000642.![]() ![]() ![]() |
|
Ya. B. Pesin,
Dimension Theory in Dynamical Systems Chicago Lectures in Mathematics, Contemporary views and applications, University of Chicago Press, Chicago, IL, 1997.
doi: 10.7208/chicago/9780226662237.001.0001.![]() ![]() ![]() |
|
Ya. B. Pesin
and B. S. Pitskel'
, Topological pressure and the variational principle for noncompact sets, Funktsional. Anal. i Prilozhen., 18 (1984)
, 50-63.
![]() ![]() |
|
P. Walters
, A variational principle for the pressure of continuous transformations, Amer. J. Math., 97 (1975)
, 937-971.
doi: 10.2307/2373682.![]() ![]() ![]() |
|
P. Walters,
An Introduction to Ergodic Theory First edition, Springer-Verlag, New York, 1982.
![]() ![]() |
A cookie cutter with discontinuous geometric potentials
The function
The cookie-cutters