• Previous Article
    Almost periodic solution for neutral functional dynamic equations with Stepanov-almost periodic terms on time scales
  • DCDS-S Home
  • This Issue
  • Next Article
    State transformations of time-varying delay systems and their applications to state observer design
June  2017, 10(3): 445-461. doi: 10.3934/dcdss.2017021

A periodic and diffusive predator-prey model with disease in the prey

1. 

School of Mathematics and Statistics, Nanjing University of Information Science and Technology, Nanjing 210044, China

2. 

School of Mathematical and Statistical Sciences, University of Texas-Rio Grande Valley, Edinburg, TX 78539, USA

3. 

College of Atmospheric Science, Nanjing University of Information Science and Technology, Nanjing 210044, China

* Corresponding author: Guangping Hu

Received  December 2015 Revised  October 2016 Published  February 2017

In this paper, we are concerned with a time periodic and diffusivepredator-prey model with disease transmission in the prey. Firstwe consider a $ SI $ model when the predator species is absent. Byintroducing the basic reproduction number for the $ SI $ model, weshow the sufficient conditions for the persistence and extinctionof the disease. When the presence of the predator is taken intoaccount, a number of sufficient conditions for the co-existence ofthe prey and predator species, the global extinction of predatorspecies and the global extinction of both the prey and predatorspecies are given.

Citation: Xiaoling Li, Guangping Hu, Zhaosheng Feng, Dongliang Li. A periodic and diffusive predator-prey model with disease in the prey. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 445-461. doi: 10.3934/dcdss.2017021
References:
[1]

N. BairagiP. K. Roy and J. Chattopadhyay, Role of infection on the stability of a predator-prey system with several response functions-A comparative study, J. Theor. Biol, 248 (2007), 10-25.  doi: 10.1016/j.jtbi.2007.05.005.  Google Scholar

[2]

R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction-Diffusion Equations, John Wiley & Sons, Ltd. , Chichester, 2003. doi: 10.1002/0470871296-0-471-49301-5.  Google Scholar

[3]

J. Chattopadhyay and O. Arino, A predator-prey model with disease in the prey, Nonlinear Anal, 36 (1999), 747-766.  doi: 10.1016/S0362-546X(98)00126-6.  Google Scholar

[4]

J. Chattopadhyay and S. Pal, Viral infection on phytoplankton-zooplankton system-a mathematical model, Ecol. Model, 151 (2002), 15-28.  doi: 10.1016/S0304-3800(01)00415-X.  Google Scholar

[5]

D. Daners and P. Koch Medina, Abstract Evolution Equations, Periodic Problems and Applications. Pitman Research Notes in Mathematics Series, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc. , New York, 1992.  Google Scholar

[6]

Z. J. DuX. Chen and Z. Feng, Multiple positive periodic solutions to a predator-prey model with Leslie-Gower Holling-type Ⅱ functional response and harvesting terms, Discrete Contin. Dyn. Syst. Ser. S, 7 (2014), 1203-1214.  doi: 10.3934/dcdss.2014.7.1203.  Google Scholar

[7]

K. P. Hadeler and H. I. Freedman, Predator-prey populations with parasitic infection, J. Math. Biol, 27 (1989), 609-631.  doi: 10.1007/BF00276947.  Google Scholar

[8]

J. K. Hale, Asymptotic Behavior of Dissipative Systems Mathematical Surveys and Monographs. Volume 25, American Mathematical Society, Providence, RI, 1988. doi: 10.1090/surv/025-0-8218-1527-X.  Google Scholar

[9]

P. Hess, Periodic-Parabolic Boundary Value Problems and Positivity Pitman Research Notes in Mathematics Series, 247. Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc. , New York, 1991.  Google Scholar

[10]

M. W. HirschH. L. Smith and X.-Q. Zhao, Chain transitivity, attractivity, and strong repellors for semidynamical systems, J. Dynam. Diff. Eqns, 13 (2001), 107-131.  doi: 10.1023/A:1009044515567.  Google Scholar

[11]

D. Le, Dissipativity and global attractors for a class of quasilinear parabolic systems, Comm. Partial. Diff. Eqns, 22 (1997), 413-433.  doi: 10.1080/03605309708821269.  Google Scholar

[12]

J. J. Li and W. J. Gao, Analysis of a prey-predator model with disease in prey, Appl. Math. Comput, 217 (2010), 4024-4035.  doi: 10.1016/j.amc.2010.10.009.  Google Scholar

[13]

Y. Lou and X.-Q. Zhao, Threshold dynamics in a time-delayed periodic SIS epidemic model, Discrete Contin. Dyn. Syst. Ser. B, 12 (2009), 169-186.  doi: 10.3934/dcdsb.2009.12.169.  Google Scholar

[14]

P. Magal and X.-Q. Zhao, Global attractors and steady states for uniformly persistent dynamical systems, SIAM J. Math. Anal, 37 (2005), 251-275.  doi: 10.1137/S0036141003439173.  Google Scholar

[15]

R. H. Martin and H. L. Smith, Abstract functional-differential equations and reaction-diffusion systems, Trans. Amer. Math. Soc, 321 (1990), 1-44.  doi: 10.2307/2001590.  Google Scholar

[16]

S. X. Pan, Minimal wave speeds of delayed dispersal predator-prey systems with stage structure, Electron. J. Differential Equations, 2016 (2016), 1-16.   Google Scholar

[17]

L. P. PengZ. Feng and C. J. Liu, Quadratic perturbations of a quadratic reversible Lotka-Volterra system with two centers, Discrete Contin. Dyn. Syst., 34 (2014), 4807-4826.  doi: 10.3934/dcds.2014.34.4807.  Google Scholar

[18]

R. Peng and X.-Q. Zhao, A reaction-diffusion SIS epidemic model in a time-periodic environment, Nonlinearity, 25 (2012), 1451-1471.  doi: 10.1088/0951-7715/25/5/1451.  Google Scholar

[19]

R. O. Peterson and R. E. Page, Wolf density as a predictor of predation rate, Swedish Wildlife Research, suppl. 1 (1987), 771-773.   Google Scholar

[20]

S. Ruan and J. Wu, Modeling spatial spread of communicable diseases involving animal hosts, in Spatial Ecology, Chapman & Hall/CRC, Boca Raton, FL, 15 (2009), 293-316. doi: 10.1201/9781420059861.ch15.  Google Scholar

[21]

B. G. Sampath Aruna Pradeep and W. Ma, Global stability of a delayed mosquito-transmitted disease model with stage structure, Electron. J. Differential Equations, 2015 (2015), 1-19.   Google Scholar

[22]

H. R. Thieme, Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity, SIAM J. Appl. Math, 70 (2009), 188-211.  doi: 10.1137/080732870.  Google Scholar

[23]

H. R. Thieme and X.-Q. Zhao, A non-local delayed and diffusive predator-prey model, Nonlinear Anal. Real World Appl, 2 (2001), 145-160.  doi: 10.1016/S0362-546X(00)00112-7.  Google Scholar

[24]

E. Venturino, The influence of diseases on Lotka-Volterra systems, Rocky Mountain J. Math, 24 (1994), 381-402.  doi: 10.1216/rmjm/1181072471.  Google Scholar

[25]

E. Venturino, The effects of diseases on competing species, Math. Biosci, 174 (2001), 111-131.  doi: 10.1016/S0025-5564(01)00081-5.  Google Scholar

[26]

E. Venturino, Epidemics in predator-prey model: Disease in the predators, IMA J. Math. Med. Biol, 19 (2002), 185-205.  doi: 10.1093/imammb/19.3.185.  Google Scholar

[27]

W. Wang and X.-Q. Zhao, Threshold dynamics for compartmental epidemic models in periodic environments, J. Dynam. Differential Equations, 20 (2008), 699-717.  doi: 10.1007/s10884-008-9111-8.  Google Scholar

[28]

J. Wu, Spatial structure: partial differential equations models, in Mathematical epidemiology, Lecture Notes in Math. , Springer, Berlin, 1945 (2008), 191-203. doi: 10.1007/978-3-540-78911-6_8.  Google Scholar

[29]

Y. Xiao and L. Chen, Modeling and analysis of a predator-prey model with disease in the prey, Math. Biosci, 171 (2001), 59-82.  doi: 10.1016/S0025-5564(01)00049-9.  Google Scholar

[30]

Y. Xiao and L. Chen, A ratio-dependent predator-prey model with disease in the prey, Appl. Math. Comput, 131 (2002), 397-414.  doi: 10.1016/S0096-3003(01)00156-4.  Google Scholar

[31]

L. Zhang and Z.-C. Wang, Spatial dynamics of a diffusive predator-prey model with stage structure, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 1831-1853.  doi: 10.3934/dcdsb.2015.20.1831.  Google Scholar

[32]

L. ZhangZ.-C. Wang and X.-Q. Zhao, Threshold dynamics of a time periodic reaction-diffusion epidemic model with latent period, J. Differential Equations, 258 (2015), 3011-3036.  doi: 10.1016/j.jde.2014.12.032.  Google Scholar

[33]

X. ZhangY. Huang and P. Weng, Permanence and stability of a diffusive predator-prey model with disease in the prey, Comput. Math. Appl, 68 (2014), 1431-1445.  doi: 10.1016/j.camwa.2014.09.011.  Google Scholar

[34]

X. -Q. Zhao, Dynamical Systems in Population Biology Springer-Verlag, New York, 2003. doi: 10.1007/978-0-387-21761-1.  Google Scholar

[35]

Y. ZhouW. ZhangS. Yuan and H. Hu, Persistence and extinction in stochastic SIRS models with general nonlinear incidence rate, Electron. J. Differential Equations, 2014 (2014), 1-17.   Google Scholar

show all references

References:
[1]

N. BairagiP. K. Roy and J. Chattopadhyay, Role of infection on the stability of a predator-prey system with several response functions-A comparative study, J. Theor. Biol, 248 (2007), 10-25.  doi: 10.1016/j.jtbi.2007.05.005.  Google Scholar

[2]

R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction-Diffusion Equations, John Wiley & Sons, Ltd. , Chichester, 2003. doi: 10.1002/0470871296-0-471-49301-5.  Google Scholar

[3]

J. Chattopadhyay and O. Arino, A predator-prey model with disease in the prey, Nonlinear Anal, 36 (1999), 747-766.  doi: 10.1016/S0362-546X(98)00126-6.  Google Scholar

[4]

J. Chattopadhyay and S. Pal, Viral infection on phytoplankton-zooplankton system-a mathematical model, Ecol. Model, 151 (2002), 15-28.  doi: 10.1016/S0304-3800(01)00415-X.  Google Scholar

[5]

D. Daners and P. Koch Medina, Abstract Evolution Equations, Periodic Problems and Applications. Pitman Research Notes in Mathematics Series, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc. , New York, 1992.  Google Scholar

[6]

Z. J. DuX. Chen and Z. Feng, Multiple positive periodic solutions to a predator-prey model with Leslie-Gower Holling-type Ⅱ functional response and harvesting terms, Discrete Contin. Dyn. Syst. Ser. S, 7 (2014), 1203-1214.  doi: 10.3934/dcdss.2014.7.1203.  Google Scholar

[7]

K. P. Hadeler and H. I. Freedman, Predator-prey populations with parasitic infection, J. Math. Biol, 27 (1989), 609-631.  doi: 10.1007/BF00276947.  Google Scholar

[8]

J. K. Hale, Asymptotic Behavior of Dissipative Systems Mathematical Surveys and Monographs. Volume 25, American Mathematical Society, Providence, RI, 1988. doi: 10.1090/surv/025-0-8218-1527-X.  Google Scholar

[9]

P. Hess, Periodic-Parabolic Boundary Value Problems and Positivity Pitman Research Notes in Mathematics Series, 247. Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc. , New York, 1991.  Google Scholar

[10]

M. W. HirschH. L. Smith and X.-Q. Zhao, Chain transitivity, attractivity, and strong repellors for semidynamical systems, J. Dynam. Diff. Eqns, 13 (2001), 107-131.  doi: 10.1023/A:1009044515567.  Google Scholar

[11]

D. Le, Dissipativity and global attractors for a class of quasilinear parabolic systems, Comm. Partial. Diff. Eqns, 22 (1997), 413-433.  doi: 10.1080/03605309708821269.  Google Scholar

[12]

J. J. Li and W. J. Gao, Analysis of a prey-predator model with disease in prey, Appl. Math. Comput, 217 (2010), 4024-4035.  doi: 10.1016/j.amc.2010.10.009.  Google Scholar

[13]

Y. Lou and X.-Q. Zhao, Threshold dynamics in a time-delayed periodic SIS epidemic model, Discrete Contin. Dyn. Syst. Ser. B, 12 (2009), 169-186.  doi: 10.3934/dcdsb.2009.12.169.  Google Scholar

[14]

P. Magal and X.-Q. Zhao, Global attractors and steady states for uniformly persistent dynamical systems, SIAM J. Math. Anal, 37 (2005), 251-275.  doi: 10.1137/S0036141003439173.  Google Scholar

[15]

R. H. Martin and H. L. Smith, Abstract functional-differential equations and reaction-diffusion systems, Trans. Amer. Math. Soc, 321 (1990), 1-44.  doi: 10.2307/2001590.  Google Scholar

[16]

S. X. Pan, Minimal wave speeds of delayed dispersal predator-prey systems with stage structure, Electron. J. Differential Equations, 2016 (2016), 1-16.   Google Scholar

[17]

L. P. PengZ. Feng and C. J. Liu, Quadratic perturbations of a quadratic reversible Lotka-Volterra system with two centers, Discrete Contin. Dyn. Syst., 34 (2014), 4807-4826.  doi: 10.3934/dcds.2014.34.4807.  Google Scholar

[18]

R. Peng and X.-Q. Zhao, A reaction-diffusion SIS epidemic model in a time-periodic environment, Nonlinearity, 25 (2012), 1451-1471.  doi: 10.1088/0951-7715/25/5/1451.  Google Scholar

[19]

R. O. Peterson and R. E. Page, Wolf density as a predictor of predation rate, Swedish Wildlife Research, suppl. 1 (1987), 771-773.   Google Scholar

[20]

S. Ruan and J. Wu, Modeling spatial spread of communicable diseases involving animal hosts, in Spatial Ecology, Chapman & Hall/CRC, Boca Raton, FL, 15 (2009), 293-316. doi: 10.1201/9781420059861.ch15.  Google Scholar

[21]

B. G. Sampath Aruna Pradeep and W. Ma, Global stability of a delayed mosquito-transmitted disease model with stage structure, Electron. J. Differential Equations, 2015 (2015), 1-19.   Google Scholar

[22]

H. R. Thieme, Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity, SIAM J. Appl. Math, 70 (2009), 188-211.  doi: 10.1137/080732870.  Google Scholar

[23]

H. R. Thieme and X.-Q. Zhao, A non-local delayed and diffusive predator-prey model, Nonlinear Anal. Real World Appl, 2 (2001), 145-160.  doi: 10.1016/S0362-546X(00)00112-7.  Google Scholar

[24]

E. Venturino, The influence of diseases on Lotka-Volterra systems, Rocky Mountain J. Math, 24 (1994), 381-402.  doi: 10.1216/rmjm/1181072471.  Google Scholar

[25]

E. Venturino, The effects of diseases on competing species, Math. Biosci, 174 (2001), 111-131.  doi: 10.1016/S0025-5564(01)00081-5.  Google Scholar

[26]

E. Venturino, Epidemics in predator-prey model: Disease in the predators, IMA J. Math. Med. Biol, 19 (2002), 185-205.  doi: 10.1093/imammb/19.3.185.  Google Scholar

[27]

W. Wang and X.-Q. Zhao, Threshold dynamics for compartmental epidemic models in periodic environments, J. Dynam. Differential Equations, 20 (2008), 699-717.  doi: 10.1007/s10884-008-9111-8.  Google Scholar

[28]

J. Wu, Spatial structure: partial differential equations models, in Mathematical epidemiology, Lecture Notes in Math. , Springer, Berlin, 1945 (2008), 191-203. doi: 10.1007/978-3-540-78911-6_8.  Google Scholar

[29]

Y. Xiao and L. Chen, Modeling and analysis of a predator-prey model with disease in the prey, Math. Biosci, 171 (2001), 59-82.  doi: 10.1016/S0025-5564(01)00049-9.  Google Scholar

[30]

Y. Xiao and L. Chen, A ratio-dependent predator-prey model with disease in the prey, Appl. Math. Comput, 131 (2002), 397-414.  doi: 10.1016/S0096-3003(01)00156-4.  Google Scholar

[31]

L. Zhang and Z.-C. Wang, Spatial dynamics of a diffusive predator-prey model with stage structure, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 1831-1853.  doi: 10.3934/dcdsb.2015.20.1831.  Google Scholar

[32]

L. ZhangZ.-C. Wang and X.-Q. Zhao, Threshold dynamics of a time periodic reaction-diffusion epidemic model with latent period, J. Differential Equations, 258 (2015), 3011-3036.  doi: 10.1016/j.jde.2014.12.032.  Google Scholar

[33]

X. ZhangY. Huang and P. Weng, Permanence and stability of a diffusive predator-prey model with disease in the prey, Comput. Math. Appl, 68 (2014), 1431-1445.  doi: 10.1016/j.camwa.2014.09.011.  Google Scholar

[34]

X. -Q. Zhao, Dynamical Systems in Population Biology Springer-Verlag, New York, 2003. doi: 10.1007/978-0-387-21761-1.  Google Scholar

[35]

Y. ZhouW. ZhangS. Yuan and H. Hu, Persistence and extinction in stochastic SIRS models with general nonlinear incidence rate, Electron. J. Differential Equations, 2014 (2014), 1-17.   Google Scholar

[1]

Jiang Liu, Xiaohui Shang, Zengji Du. Traveling wave solutions of a reaction-diffusion predator-prey model. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1063-1078. doi: 10.3934/dcdss.2017057

[2]

Miljana JovanoviĆ, Marija KrstiĆ. Extinction in stochastic predator-prey population model with Allee effect on prey. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2651-2667. doi: 10.3934/dcdsb.2017129

[3]

Mostafa Bendahmane. Analysis of a reaction-diffusion system modeling predator-prey with prey-taxis. Networks & Heterogeneous Media, 2008, 3 (4) : 863-879. doi: 10.3934/nhm.2008.3.863

[4]

Sebastién Gaucel, Michel Langlais. Some remarks on a singular reaction-diffusion system arising in predator-prey modeling. Discrete & Continuous Dynamical Systems - B, 2007, 8 (1) : 61-72. doi: 10.3934/dcdsb.2007.8.61

[5]

Peter A. Braza. Predator-Prey Dynamics with Disease in the Prey. Mathematical Biosciences & Engineering, 2005, 2 (4) : 703-717. doi: 10.3934/mbe.2005.2.703

[6]

Ovide Arino, Manuel Delgado, Mónica Molina-Becerra. Asymptotic behavior of disease-free equilibriums of an age-structured predator-prey model with disease in the prey. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 501-515. doi: 10.3934/dcdsb.2004.4.501

[7]

Kazuo Yamazaki, Xueying Wang. Global stability and uniform persistence of the reaction-convection-diffusion cholera epidemic model. Mathematical Biosciences & Engineering, 2017, 14 (2) : 559-579. doi: 10.3934/mbe.2017033

[8]

Zhijun Liu, Weidong Wang. Persistence and periodic solutions of a nonautonomous predator-prey diffusion with Holling III functional response and continuous delay. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 653-662. doi: 10.3934/dcdsb.2004.4.653

[9]

Wenshu Zhou, Hongxing Zhao, Xiaodan Wei, Guokai Xu. Existence of positive steady states for a predator-prey model with diffusion. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2189-2201. doi: 10.3934/cpaa.2013.12.2189

[10]

Yinshu Wu, Wenzhang Huang. Global stability of the predator-prey model with a sigmoid functional response. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2019214

[11]

Li Zu, Daqing Jiang, Donal O'Regan. Persistence and stationary distribution of a stochastic predator-prey model under regime switching. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2881-2897. doi: 10.3934/dcds.2017124

[12]

Hongxiao Hu, Liguang Xu, Kai Wang. A comparison of deterministic and stochastic predator-prey models with disease in the predator. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2837-2863. doi: 10.3934/dcdsb.2018289

[13]

Yun Kang, Sourav Kumar Sasmal, Amiya Ranjan Bhowmick, Joydev Chattopadhyay. Dynamics of a predator-prey system with prey subject to Allee effects and disease. Mathematical Biosciences & Engineering, 2014, 11 (4) : 877-918. doi: 10.3934/mbe.2014.11.877

[14]

Wenzhang Huang, Maoan Han, Kaiyu Liu. Dynamics of an SIS reaction-diffusion epidemic model for disease transmission. Mathematical Biosciences & Engineering, 2010, 7 (1) : 51-66. doi: 10.3934/mbe.2010.7.51

[15]

Walid Abid, Radouane Yafia, M.A. Aziz-Alaoui, Habib Bouhafa, Azgal Abichou. Global dynamics on a circular domain of a diffusion predator-prey model with modified Leslie-Gower and Beddington-DeAngelis functional type. Evolution Equations & Control Theory, 2015, 4 (2) : 115-129. doi: 10.3934/eect.2015.4.115

[16]

Keng Deng, Yixiang Wu. Extinction and uniform strong persistence of a size-structured population model. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 831-840. doi: 10.3934/dcdsb.2017041

[17]

Xiang-Sheng Wang, Haiyan Wang, Jianhong Wu. Traveling waves of diffusive predator-prey systems: Disease outbreak propagation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (9) : 3303-3324. doi: 10.3934/dcds.2012.32.3303

[18]

Angelo Favini, Atsushi Yagi. Global existence for Laplace reaction-diffusion equations. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1-21. doi: 10.3934/dcdss.2020083

[19]

Peng Feng. On a diffusive predator-prey model with nonlinear harvesting. Mathematical Biosciences & Engineering, 2014, 11 (4) : 807-821. doi: 10.3934/mbe.2014.11.807

[20]

Ronald E. Mickens. Analysis of a new class of predator-prey model. Conference Publications, 2001, 2001 (Special) : 265-269. doi: 10.3934/proc.2001.2001.265

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (18)
  • HTML views (2)
  • Cited by (2)

[Back to Top]