June  2017, 10(3): 463-473. doi: 10.3934/dcdss.2017022

Almost periodic solution for neutral functional dynamic equations with Stepanov-almost periodic terms on time scales

Department of Mathematics, Yunnan University, Kunming, Yunnan 650091, China

* Corresponding author: Yongkun Li

Received  November 2015 Revised  December 2016 Published  February 2017

Fund Project: The first author is supported by the National Natural Sciences Foundation of China under Grant 11361072.

We first propose a concept of almost periodic functions in the sense of Stepanov on time scales. Then, we consider a class of neutral functional dynamic equations with Stepanov-almost periodic terms on time scales in a Banach space. By means of the contraction mapping principle, we establish some criteria for the existence and uniqueness of almost periodic solutions for this class of dynamic equations on time scales. Finally, we give an example to illustrate the effectiveness of our results.

Citation: Yongkun Li, Pan Wang. Almost periodic solution for neutral functional dynamic equations with Stepanov-almost periodic terms on time scales. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 463-473. doi: 10.3934/dcdss.2017022
References:
[1]

B. Amir and L. Maniar, Composition of pseudo almost periodic functions and Cauchy problems with operator of non dense domain, Ann. Math. Blaise Pascal, 6 (1999), 1-11. doi: 10.5802/ambp.110. Google Scholar

[2]

L. Amerio and G. Prouse, Almost-periodic Functions and Functional Differential Equations, Van Nostrand-Reinhold, New York, 1971. Google Scholar

[3]

J. Andres and D. Pennequin, On Stepanov almost-periodic oscillations and their discretizations, J. Differ. Equ. Appl., 18 (2012), 1665-1682. doi: 10.1080/10236198.2011.587813. Google Scholar

[4]

J. Andres and D. Pennequin, On the nonexistence of purely Stepanov almost-periodic solutions of ordinary differential equations, Proc. Am. Math. Soc., 140 (2012), 2825-2834. doi: 10.1090/S0002-9939-2012-11154-2. Google Scholar

[5]

S. Bochner, Beitrage zur Theorie der fastperiodischen Funktionen, Ⅰ, Mathematische Annalen, 96 (1927), 119-147. doi: 10.1007/BF01209156. Google Scholar

[6]

S. Bochner, Abstrakte fastperiodische Funktionen, Acta Mathematica, 61 (1933), 149-184. doi: 10.1007/BF02547790. Google Scholar

[7]

S. Bochner, Fastperiodische Lösungen der Wellengleichung, Acta Mathematica, 62 (1933), 227-237. doi: 10.1007/BF02393605. Google Scholar

[8]

M. Bohner and A. Peterson, Dynamic Equations on Time Scales: An Introduction with Applications, Birkh$ \ddot{\mathrm{a}} $user, Boston, 2001. doi: 10.1007/978-1-4612-0201-1. Google Scholar

[9]

M. Bohner and A. Peterson, Advances in Dynamic Equations on Time Scales, Birkh$ \ddot{\mathrm{a}} $user, Boston, 2003. doi: 10.1007/978-1-4612-0201-1. Google Scholar

[10]

H. Bohr, Zur Theorie der fastperiodischen Funktionen, Ⅰ, Acta Mathematica, 45 (1925), 29-127. doi: 10.1007/BF02395468. Google Scholar

[11]

H. Bohr, Zur Theorie der fastperiodischen Funktionen, Ⅱ, Acta Mathematica, 46 (1925), 101-214. doi: 10.1007/BF02543859. Google Scholar

[12]

A. Cabada and D. R. Vivero, Expression of the Lebesgue Δ-integral on time scales as a usual Lebesgue integral; application to the calculus of Δ-antiderivatives, Math. Comput. Modelling, 43 (2006), 194-207. doi: 10.1016/j.mcm.2005.09.028. Google Scholar

[13]

X. X. Chen and F. X. Lin, Almost periodic solutions of neutral functional differential equations, Nonlinear Anal. Real World Appl., 11 (2010), 1182-1189. doi: 10.1016/j.nonrwa.2009.02.010. Google Scholar

[14]

J. Favard, Sur les équations différentielles á coefficients présquepériodiques, Acta Mathematica, 51 (1927), 31-81. doi: 10.1007/BF02545660. Google Scholar

[15]

J. Favard, Leçons sur les fonctions presque-périodiques, Paris, Gauthier-Villars, 1933.Google Scholar

[16]

A. M. Fink, Almost Periodic Differential Equations, Springer, Berlin, 1974. Google Scholar

[17]

Z. Hu, Boundedness and Stepanov's almost periodicity of solutions, Electron. J. Differ. Equ., 2005 (2005), 1-7. Google Scholar

[18]

Z. Hu and A. B. Mingarelli, Bochner's theorem and Stepanov almost periodic functions, Ann. Mat. Pura Appl., 187 (2008), 719-736. doi: 10.1007/s10231-008-0066-5. Google Scholar

[19]

M. N. Islam and Y. N. Raffoul, Periodic solutions of neutral nonlinear system of differential equations with functional delay, J. Math. Anal. Appl., 331 (2007), 1175-1186. doi: 10.1016/j.jmaa.2006.09.030. Google Scholar

[20]

B. Jackson, Partial dynamic equations on time scales, J. Comput. Appl. Math., 186 (2006), 391-415. doi: 10.1016/j.cam.2005.02.011. Google Scholar

[21]

Y. K. Li and B. Li, Existence and exponential stability of positive almost periodic solution for Nicholson's blowflies models on time scales, SpringerPlus, 5 (2016), p1096. doi: 10.1186/s40064-016-2700-9. Google Scholar

[22]

Y. K. Li and C. Wang, Uniformly almost periodic functions and almost periodic solutions to dynamic equations on time scales, Abstr. Appl. Anal., 2011 (2011), Article ID 341520, 22 pp. doi: 10.1155/2011/341520. Google Scholar

[23]

Y. K. Li, L. L. Zhao and L. Yang, $ C^1 $-almost periodic solutions of BAM neural networks with time-varying delays on time scales, The Scientific World J., 2015 (2015), Article ID 727329, 15 pp. doi: 10.1155/2015/727329. Google Scholar

[24]

Md. Maqbul, Almost periodic solutions of neutral functional differential equations with Stepanov-almost periodic terms, Electron. J. Differ. Equ., 2011 (2011), 1-9. Google Scholar

[25]

Md. Maqbul and D. Bahuguna, Almost periodic solutions for Stepanov-almost periodic differential equations, Differ. Equ. Dyn. Syst., 22 (2014), 251-264. doi: 10.1007/s12591-013-0172-8. Google Scholar

[26]

V. V. Stepanov, Uber einige Verallgemeinerungen der fastperiodischen Funktionen, Mathematische Annalen, 95 (1926), 437-498. Google Scholar

[27]

Y.-H. Su and Z. S. Feng, A non-autonomous Hamiltonian system on time scales, Nonlinear Anal., 75 (2012), 4126-4136. doi: 10.1016/j.na.2012.03.003. Google Scholar

[28]

Y.-H. Su and Z. S. Feng, Homoclinic orbits and periodic solutions for a class of Hamiltonian systems on time scales, J. Math. Anal. Appl., 411 (2014), 37-62. doi: 10.1016/j.jmaa.2013.08.068. Google Scholar

[29]

C. Wang and Y. K. Li, Weighted pseudo almost automorphic functions with applications to abstract dynamic equations on time scales, Ann. Pol. Math., 108 (2013), 225–240, Available from: http://eudml.org/doc/280802. doi: 10.4064/ap108-3-3. Google Scholar

[30]

L. Yang and Y. K. Li, Existence and global exponential stability of almost periodic solutions for a class of delay duffing equations on time scales, Abstr. Appl. Anal., 2014 (2014), Article ID 857161, 8 pp. doi: 10.1155/2014/857161. Google Scholar

[31]

H. ZhouZ. F. Zhou and W. Jiang, Almost periodic solutions for neutral type BAM neural networks with distributed leakage delays on time scales, Neurocomputing, 157 (2015), 223-230. doi: 10.1016/j.neucom.2015.01.013. Google Scholar

show all references

References:
[1]

B. Amir and L. Maniar, Composition of pseudo almost periodic functions and Cauchy problems with operator of non dense domain, Ann. Math. Blaise Pascal, 6 (1999), 1-11. doi: 10.5802/ambp.110. Google Scholar

[2]

L. Amerio and G. Prouse, Almost-periodic Functions and Functional Differential Equations, Van Nostrand-Reinhold, New York, 1971. Google Scholar

[3]

J. Andres and D. Pennequin, On Stepanov almost-periodic oscillations and their discretizations, J. Differ. Equ. Appl., 18 (2012), 1665-1682. doi: 10.1080/10236198.2011.587813. Google Scholar

[4]

J. Andres and D. Pennequin, On the nonexistence of purely Stepanov almost-periodic solutions of ordinary differential equations, Proc. Am. Math. Soc., 140 (2012), 2825-2834. doi: 10.1090/S0002-9939-2012-11154-2. Google Scholar

[5]

S. Bochner, Beitrage zur Theorie der fastperiodischen Funktionen, Ⅰ, Mathematische Annalen, 96 (1927), 119-147. doi: 10.1007/BF01209156. Google Scholar

[6]

S. Bochner, Abstrakte fastperiodische Funktionen, Acta Mathematica, 61 (1933), 149-184. doi: 10.1007/BF02547790. Google Scholar

[7]

S. Bochner, Fastperiodische Lösungen der Wellengleichung, Acta Mathematica, 62 (1933), 227-237. doi: 10.1007/BF02393605. Google Scholar

[8]

M. Bohner and A. Peterson, Dynamic Equations on Time Scales: An Introduction with Applications, Birkh$ \ddot{\mathrm{a}} $user, Boston, 2001. doi: 10.1007/978-1-4612-0201-1. Google Scholar

[9]

M. Bohner and A. Peterson, Advances in Dynamic Equations on Time Scales, Birkh$ \ddot{\mathrm{a}} $user, Boston, 2003. doi: 10.1007/978-1-4612-0201-1. Google Scholar

[10]

H. Bohr, Zur Theorie der fastperiodischen Funktionen, Ⅰ, Acta Mathematica, 45 (1925), 29-127. doi: 10.1007/BF02395468. Google Scholar

[11]

H. Bohr, Zur Theorie der fastperiodischen Funktionen, Ⅱ, Acta Mathematica, 46 (1925), 101-214. doi: 10.1007/BF02543859. Google Scholar

[12]

A. Cabada and D. R. Vivero, Expression of the Lebesgue Δ-integral on time scales as a usual Lebesgue integral; application to the calculus of Δ-antiderivatives, Math. Comput. Modelling, 43 (2006), 194-207. doi: 10.1016/j.mcm.2005.09.028. Google Scholar

[13]

X. X. Chen and F. X. Lin, Almost periodic solutions of neutral functional differential equations, Nonlinear Anal. Real World Appl., 11 (2010), 1182-1189. doi: 10.1016/j.nonrwa.2009.02.010. Google Scholar

[14]

J. Favard, Sur les équations différentielles á coefficients présquepériodiques, Acta Mathematica, 51 (1927), 31-81. doi: 10.1007/BF02545660. Google Scholar

[15]

J. Favard, Leçons sur les fonctions presque-périodiques, Paris, Gauthier-Villars, 1933.Google Scholar

[16]

A. M. Fink, Almost Periodic Differential Equations, Springer, Berlin, 1974. Google Scholar

[17]

Z. Hu, Boundedness and Stepanov's almost periodicity of solutions, Electron. J. Differ. Equ., 2005 (2005), 1-7. Google Scholar

[18]

Z. Hu and A. B. Mingarelli, Bochner's theorem and Stepanov almost periodic functions, Ann. Mat. Pura Appl., 187 (2008), 719-736. doi: 10.1007/s10231-008-0066-5. Google Scholar

[19]

M. N. Islam and Y. N. Raffoul, Periodic solutions of neutral nonlinear system of differential equations with functional delay, J. Math. Anal. Appl., 331 (2007), 1175-1186. doi: 10.1016/j.jmaa.2006.09.030. Google Scholar

[20]

B. Jackson, Partial dynamic equations on time scales, J. Comput. Appl. Math., 186 (2006), 391-415. doi: 10.1016/j.cam.2005.02.011. Google Scholar

[21]

Y. K. Li and B. Li, Existence and exponential stability of positive almost periodic solution for Nicholson's blowflies models on time scales, SpringerPlus, 5 (2016), p1096. doi: 10.1186/s40064-016-2700-9. Google Scholar

[22]

Y. K. Li and C. Wang, Uniformly almost periodic functions and almost periodic solutions to dynamic equations on time scales, Abstr. Appl. Anal., 2011 (2011), Article ID 341520, 22 pp. doi: 10.1155/2011/341520. Google Scholar

[23]

Y. K. Li, L. L. Zhao and L. Yang, $ C^1 $-almost periodic solutions of BAM neural networks with time-varying delays on time scales, The Scientific World J., 2015 (2015), Article ID 727329, 15 pp. doi: 10.1155/2015/727329. Google Scholar

[24]

Md. Maqbul, Almost periodic solutions of neutral functional differential equations with Stepanov-almost periodic terms, Electron. J. Differ. Equ., 2011 (2011), 1-9. Google Scholar

[25]

Md. Maqbul and D. Bahuguna, Almost periodic solutions for Stepanov-almost periodic differential equations, Differ. Equ. Dyn. Syst., 22 (2014), 251-264. doi: 10.1007/s12591-013-0172-8. Google Scholar

[26]

V. V. Stepanov, Uber einige Verallgemeinerungen der fastperiodischen Funktionen, Mathematische Annalen, 95 (1926), 437-498. Google Scholar

[27]

Y.-H. Su and Z. S. Feng, A non-autonomous Hamiltonian system on time scales, Nonlinear Anal., 75 (2012), 4126-4136. doi: 10.1016/j.na.2012.03.003. Google Scholar

[28]

Y.-H. Su and Z. S. Feng, Homoclinic orbits and periodic solutions for a class of Hamiltonian systems on time scales, J. Math. Anal. Appl., 411 (2014), 37-62. doi: 10.1016/j.jmaa.2013.08.068. Google Scholar

[29]

C. Wang and Y. K. Li, Weighted pseudo almost automorphic functions with applications to abstract dynamic equations on time scales, Ann. Pol. Math., 108 (2013), 225–240, Available from: http://eudml.org/doc/280802. doi: 10.4064/ap108-3-3. Google Scholar

[30]

L. Yang and Y. K. Li, Existence and global exponential stability of almost periodic solutions for a class of delay duffing equations on time scales, Abstr. Appl. Anal., 2014 (2014), Article ID 857161, 8 pp. doi: 10.1155/2014/857161. Google Scholar

[31]

H. ZhouZ. F. Zhou and W. Jiang, Almost periodic solutions for neutral type BAM neural networks with distributed leakage delays on time scales, Neurocomputing, 157 (2015), 223-230. doi: 10.1016/j.neucom.2015.01.013. Google Scholar

[1]

Nguyen Minh Man, Nguyen Van Minh. On the existence of quasi periodic and almost periodic solutions of neutral functional differential equations. Communications on Pure & Applied Analysis, 2004, 3 (2) : 291-300. doi: 10.3934/cpaa.2004.3.291

[2]

Junhao Hu, Chenggui Yuan. Strong convergence of neutral stochastic functional differential equations with two time-scales. Discrete & Continuous Dynamical Systems - B, 2019, 24 (11) : 5831-5848. doi: 10.3934/dcdsb.2019108

[3]

Ruichao Guo, Yong Li, Jiamin Xing, Xue Yang. Existence of periodic solutions of dynamic equations on time scales by averaging. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 959-971. doi: 10.3934/dcdss.2017050

[4]

Mostafa Fazly, Mahmoud Hesaaraki. Periodic solutions for a semi-ratio-dependent predator-prey dynamical system with a class of functional responses on time scales. Discrete & Continuous Dynamical Systems - B, 2008, 9 (2) : 267-279. doi: 10.3934/dcdsb.2008.9.267

[5]

Sung Kyu Choi, Namjip Koo. Stability of linear dynamic equations on time scales. Conference Publications, 2009, 2009 (Special) : 161-170. doi: 10.3934/proc.2009.2009.161

[6]

B. Kaymakcalan, R. Mert, A. Zafer. Asymptotic equivalence of dynamic systems on time scales. Conference Publications, 2007, 2007 (Special) : 558-567. doi: 10.3934/proc.2007.2007.558

[7]

Wacław Marzantowicz, Justyna Signerska. Firing map of an almost periodic input function. Conference Publications, 2011, 2011 (Special) : 1032-1041. doi: 10.3934/proc.2011.2011.1032

[8]

Xiao Wang, Zhaohui Yang, Xiongwei Liu. Periodic and almost periodic oscillations in a delay differential equation system with time-varying coefficients. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6123-6138. doi: 10.3934/dcds.2017263

[9]

Raegan Higgins. Asymptotic behavior of second-order nonlinear dynamic equations on time scales. Discrete & Continuous Dynamical Systems - B, 2010, 13 (3) : 609-622. doi: 10.3934/dcdsb.2010.13.609

[10]

Chunhong Li, Jiaowan Luo. Stochastic invariance for neutral functional differential equation with non-lipschitz coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3299-3318. doi: 10.3934/dcdsb.2018321

[11]

Denis Pennequin. Existence of almost periodic solutions of discrete time equations. Discrete & Continuous Dynamical Systems - A, 2001, 7 (1) : 51-60. doi: 10.3934/dcds.2001.7.51

[12]

Guy Barles, Ariela Briani, Emmanuel Trélat. Value function for regional control problems via dynamic programming and Pontryagin maximum principle. Mathematical Control & Related Fields, 2018, 8 (3&4) : 509-533. doi: 10.3934/mcrf.2018021

[13]

Yunfei Peng, X. Xiang. A class of nonlinear impulsive differential equation and optimal controls on time scales. Discrete & Continuous Dynamical Systems - B, 2011, 16 (4) : 1137-1155. doi: 10.3934/dcdsb.2011.16.1137

[14]

Saroj Panigrahi. Liapunov-type integral inequalities for higher order dynamic equations on time scales. Conference Publications, 2013, 2013 (special) : 629-641. doi: 10.3934/proc.2013.2013.629

[15]

Y. Gong, X. Xiang. A class of optimal control problems of systems governed by the first order linear dynamic equations on time scales. Journal of Industrial & Management Optimization, 2009, 5 (1) : 1-10. doi: 10.3934/jimo.2009.5.1

[16]

Tomás Caraballo, Gábor Kiss. Attractivity for neutral functional differential equations. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1793-1804. doi: 10.3934/dcdsb.2013.18.1793

[17]

Lizhong Qiang, Bin-Guo Wang. An almost periodic malaria transmission model with time-delayed input of vector. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1525-1546. doi: 10.3934/dcdsb.2017073

[18]

P.E. Kloeden. Pitchfork and transcritical bifurcations in systems with homogeneous nonlinearities and an almost periodic time coefficient. Communications on Pure & Applied Analysis, 2004, 3 (2) : 161-173. doi: 10.3934/cpaa.2004.3.161

[19]

Dirk Aeyels, Filip De Smet, Bavo Langerock. Area contraction in the presence of first integrals and almost global convergence. Discrete & Continuous Dynamical Systems - A, 2007, 18 (1) : 135-157. doi: 10.3934/dcds.2007.18.135

[20]

Peter Giesl. Converse theorem on a global contraction metric for a periodic orbit. Discrete & Continuous Dynamical Systems - A, 2019, 39 (9) : 5339-5363. doi: 10.3934/dcds.2019218

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (17)
  • HTML views (1)
  • Cited by (1)

Other articles
by authors

[Back to Top]