    June  2017, 10(3): 475-485. doi: 10.3934/dcdss.2017023

## Condensing operators and periodic solutions of infinite delay impulsive evolution equations

 1 School of Mathematical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China 2 Department of Mathematics, James Madison University, Harrisonburg, VA 22807, USA 3 School of Mathematical Sciences, Fudan University, Shanghai 200433, China

* Corresponding author

Received  March 2016 Revised  October 2016 Published  February 2017

Fund Project: The first author is supported by NSF of China Grant No. 11571229. The third author is supported by NSF of China Grant No. 11371095.

By showing the existence of the fixed point of the condensing operators in the phasespace
 $C_μ$
for the Cauchy problem for impulsive evolution equations with infinite delay in a Banach space
 $X$
:
 \begin{align} &{{x}^{\prime }}(t)+\mathfrak{A}(t)x(t)=\mathfrak{F}(t,x(t),{{x}_{t}}),\ \ t>0,\ t\ne {{t}_{i}}, \\ &x(s)=\varphi (s),\ s\le 0, \\ &\Delta x({{t}_{i}})={{\Im }_{i}}(x({{t}_{i}})),\ \ i=1,2,\cdots ,\ \ 0<{{t}_{1}}<{{t}_{2}}<\cdots <\infty , \\ \end{align}
where
 $\mathfrak{A}(t)$
is
 $\varpi$
-periodic, the operator
 $\mathfrak{A}(t)$
is unbounded for each
 $t>0$
,
 $x_t (s)=x(t+s),\; s≤0$
,
 $Δ x(t_i)= x(t_i ^+)-x(t_i ^- )$
,
 $\mathfrak{F}$
,
 $φ$
and
 $\mathfrak{I}_i\ (i=1,···,n)$
are given functions, we derive periodic solutions from bounded solutions. The new periodic solution existence results obtained here extend earlier results in this area for evolution equations without impulsive conditions or without infinite delay.
Citation: Jin Liang, James H. Liu, Ti-Jun Xiao. Condensing operators and periodic solutions of infinite delay impulsive evolution equations. Discrete and Continuous Dynamical Systems - S, 2017, 10 (3) : 475-485. doi: 10.3934/dcdss.2017023
##### References:
  H. Amann, Periodic solutions of semi-linear parabolic equations, Nonlinear Analysis, A Collection of Papers in Honor of Erich Roth, Academic Press, New York, (1978), 1-29.  B. de Andrade and C. Lizama, Existence of asymptotically almost periodic solutions for damped wave equations, J. Math. Anal. Appl., 382 (2011), 761-771.  doi: 10.1016/j.jmaa.2011.04.078.   T. Diagana, Almost periodic solutions to some second-order nonautonomous differential equations, Proc. Amer. Math. Soc., 140 (2012), 279-289.  doi: 10.1090/S0002-9939-2011-10970-5.   T. Diagana, Pseudo-almost periodic solutions for some classes of nonautonomous partial evolution equations, J. Franklin Inst., 348 (2011), 2082-2098.  doi: 10.1016/j.jfranklin.2011.06.001.   Z. J. Du and Z. S. Feng, Periodic solutions of a neutral impulsive predator-prey model with Beddington-DeAngelis functional response with delays, J. Comput. Appl. Math., 258 (2014), 87-98.  doi: 10.1016/j.cam.2013.09.008.   Z. S. Feng, The uniqueness of the periodic solution for a class of differential equations, Electron. J. Qual. Theory Differ. Equ., 2000 (2000), 9 pp.  V. Lakshmikantham and S. Leela, Differential and Integral Inequalities, Vol. 1 Academic Press, New York, 1969.  J. Liang, J. Liu and T. J. Xiao, Periodic solutions of delay impulsive differential equations, Nonlinear Anal., 74 (2011), 6835-6842.  doi: 10.1016/j.na.2011.07.008.   J. Liang, J. Liu and T. J. Xiao, Periodic solutions to operational differential equations with finite delay and impulsive conditions, J. Abstr. Diff. Equ. Appl., 3 (2012), 42-47.  J. Liang, J. Liu and T. J. Xiao, Periodicity of solutions to the Cauchy problem for nonautonomous impulsive delay evolution equations in Banach spaces, Anal. Appl, 1 (2015).  doi: 10.1142/S0219530515500281.  J. Liu, Periodic solutions of infinite delay evolution equations, J. Math. Anal. Appl., 247 (2000), 627-644.  doi: 10.1006/jmaa.2000.6896.   A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.   B. Sadovskii, On a fixed point principle, Funct. Anal. Appl., 1 (1967), 74-76.  G. T. Stamov, Almost Periodic Solutions of Impulsive Differential Equations, Lecture Notes in Math. , Vol. 2047, Springer, Heidelberg, 2012. doi: 10.1007/978-3-642-27546-3.   G. T. Stamov and I. M. Stamova, Impulsive fractional functional differential systems and Lyapunov method for the existence of almost periodic solutions, Rep. Math. Phys., 75 (2015), 73-84.  doi: 10.1016/S0034-4877(15)60025-8.   N. Van Minh, G. N'Guerekata and S. Siegmund, Circular spectrum and bounded solutions of periodic evolution equations, J. Differential Equations, 246 (2009), 3089-3108.  doi: 10.1016/j.jde.2009.02.014.   show all references

##### References:
  H. Amann, Periodic solutions of semi-linear parabolic equations, Nonlinear Analysis, A Collection of Papers in Honor of Erich Roth, Academic Press, New York, (1978), 1-29.  B. de Andrade and C. Lizama, Existence of asymptotically almost periodic solutions for damped wave equations, J. Math. Anal. Appl., 382 (2011), 761-771.  doi: 10.1016/j.jmaa.2011.04.078.   T. Diagana, Almost periodic solutions to some second-order nonautonomous differential equations, Proc. Amer. Math. Soc., 140 (2012), 279-289.  doi: 10.1090/S0002-9939-2011-10970-5.   T. Diagana, Pseudo-almost periodic solutions for some classes of nonautonomous partial evolution equations, J. Franklin Inst., 348 (2011), 2082-2098.  doi: 10.1016/j.jfranklin.2011.06.001.   Z. J. Du and Z. S. Feng, Periodic solutions of a neutral impulsive predator-prey model with Beddington-DeAngelis functional response with delays, J. Comput. Appl. Math., 258 (2014), 87-98.  doi: 10.1016/j.cam.2013.09.008.   Z. S. Feng, The uniqueness of the periodic solution for a class of differential equations, Electron. J. Qual. Theory Differ. Equ., 2000 (2000), 9 pp.  V. Lakshmikantham and S. Leela, Differential and Integral Inequalities, Vol. 1 Academic Press, New York, 1969.  J. Liang, J. Liu and T. J. Xiao, Periodic solutions of delay impulsive differential equations, Nonlinear Anal., 74 (2011), 6835-6842.  doi: 10.1016/j.na.2011.07.008.   J. Liang, J. Liu and T. J. Xiao, Periodic solutions to operational differential equations with finite delay and impulsive conditions, J. Abstr. Diff. Equ. Appl., 3 (2012), 42-47.  J. Liang, J. Liu and T. J. Xiao, Periodicity of solutions to the Cauchy problem for nonautonomous impulsive delay evolution equations in Banach spaces, Anal. Appl, 1 (2015).  doi: 10.1142/S0219530515500281.  J. Liu, Periodic solutions of infinite delay evolution equations, J. Math. Anal. Appl., 247 (2000), 627-644.  doi: 10.1006/jmaa.2000.6896.   A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.   B. Sadovskii, On a fixed point principle, Funct. Anal. Appl., 1 (1967), 74-76.  G. T. Stamov, Almost Periodic Solutions of Impulsive Differential Equations, Lecture Notes in Math. , Vol. 2047, Springer, Heidelberg, 2012. doi: 10.1007/978-3-642-27546-3.   G. T. Stamov and I. M. Stamova, Impulsive fractional functional differential systems and Lyapunov method for the existence of almost periodic solutions, Rep. Math. Phys., 75 (2015), 73-84.  doi: 10.1016/S0034-4877(15)60025-8.   N. Van Minh, G. N'Guerekata and S. Siegmund, Circular spectrum and bounded solutions of periodic evolution equations, J. Differential Equations, 246 (2009), 3089-3108.  doi: 10.1016/j.jde.2009.02.014.   Teresa Faria, Rubén Figueroa. Positive periodic solutions for systems of impulsive delay differential equations. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022070  Hernán R. Henríquez, Claudio Cuevas, Alejandro Caicedo. Asymptotically periodic solutions of neutral partial differential equations with infinite delay. Communications on Pure and Applied Analysis, 2013, 12 (5) : 2031-2068. doi: 10.3934/cpaa.2013.12.2031  Jehad O. Alzabut. A necessary and sufficient condition for the existence of periodic solutions of linear impulsive differential equations with distributed delay. Conference Publications, 2007, 2007 (Special) : 35-43. doi: 10.3934/proc.2007.2007.35  Xiaowei Tang, Xilin Fu. New comparison principle with Razumikhin condition for impulsive infinite delay differential systems. Conference Publications, 2009, 2009 (Special) : 739-743. doi: 10.3934/proc.2009.2009.739  Jiaohui Xu, Tomás Caraballo. Long time behavior of fractional impulsive stochastic differential equations with infinite delay. Discrete and Continuous Dynamical Systems - B, 2019, 24 (6) : 2719-2743. doi: 10.3934/dcdsb.2018272  Teresa Faria, José J. Oliveira. On stability for impulsive delay differential equations and application to a periodic Lasota-Wazewska model. Discrete and Continuous Dynamical Systems - B, 2016, 21 (8) : 2451-2472. doi: 10.3934/dcdsb.2016055  P. Dormayer, A. F. Ivanov. Symmetric periodic solutions of a delay differential equation. Conference Publications, 1998, 1998 (Special) : 220-230. doi: 10.3934/proc.1998.1998.220  Nguyen Thi Van Anh. On periodic solutions to a class of delay differential variational inequalities. Evolution Equations and Control Theory, 2021  doi: 10.3934/eect.2021045  Xianhua Huang. Almost periodic and periodic solutions of certain dissipative delay differential equations. Conference Publications, 1998, 1998 (Special) : 301-313. doi: 10.3934/proc.1998.1998.301  Yu Guo, Xiao-Bao Shu, Qianbao Yin. Existence of solutions for first-order Hamiltonian random impulsive differential equations with Dirichlet boundary conditions. Discrete and Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021236  Jiawei Dou, Lan-sun Chen, Kaitai Li. A monotone-iterative method for finding periodic solutions of an impulsive competition system on tumor-normal cell interaction. Discrete and Continuous Dynamical Systems - B, 2004, 4 (3) : 555-562. doi: 10.3934/dcdsb.2004.4.555  Michal Fečkan, Kui Liu, JinRong Wang. $(\omega,\mathbb{T})$-periodic solutions of impulsive evolution equations. Evolution Equations and Control Theory, 2022, 11 (2) : 415-437. doi: 10.3934/eect.2021006  João Fialho, Feliz Minhós. High order periodic impulsive problems. Conference Publications, 2015, 2015 (special) : 446-454. doi: 10.3934/proc.2015.0446  Ernest Fontich, Rafael de la Llave, Yannick Sire. A method for the study of whiskered quasi-periodic and almost-periodic solutions in finite and infinite dimensional Hamiltonian systems. Electronic Research Announcements, 2009, 16: 9-22. doi: 10.3934/era.2009.16.9  Qiang Li, Mei Wei. Existence and asymptotic stability of periodic solutions for neutral evolution equations with delay. Evolution Equations and Control Theory, 2020, 9 (3) : 753-772. doi: 10.3934/eect.2020032  Shangbing Ai. Multiple positive periodic solutions for a delay host macroparasite model. Communications on Pure and Applied Analysis, 2004, 3 (2) : 175-182. doi: 10.3934/cpaa.2004.3.175  Miguel V. S. Frasson, Patricia H. Tacuri. Asymptotic behaviour of solutions to linear neutral delay differential equations with periodic coefficients. Communications on Pure and Applied Analysis, 2014, 13 (3) : 1105-1117. doi: 10.3934/cpaa.2014.13.1105  Benjamin B. Kennedy. Multiple periodic solutions of state-dependent threshold delay equations. Discrete and Continuous Dynamical Systems, 2012, 32 (5) : 1801-1833. doi: 10.3934/dcds.2012.32.1801  Zhiming Guo, Xiaomin Zhang. Multiplicity results for periodic solutions to a class of second order delay differential equations. Communications on Pure and Applied Analysis, 2010, 9 (6) : 1529-1542. doi: 10.3934/cpaa.2010.9.1529  Vera Ignatenko. Homoclinic and stable periodic solutions for differential delay equations from physiology. Discrete and Continuous Dynamical Systems, 2018, 38 (7) : 3637-3661. doi: 10.3934/dcds.2018157

2020 Impact Factor: 2.425