June  2017, 10(3): 581-603. doi: 10.3934/dcdss.2017029

Stability of non-monotone non-critical traveling waves in discrete reaction-diffusion equations with time delay

1. 

College of Mathematics and Statistics, Northwest Normal University, Lanzhou, Gansu 730070, China

2. 

School of Mathematical and Statistical Sciences, University of Texas-Rio Grande Valley, Edinburg, TX 78539, USA

* Corresponding author: Guo-Bao Zhang

Received  January 2016 Revised  December 2016 Published  February 2017

This paper is concerned with traveling waves for temporally delayed, spatially discrete reaction-diffusion equations without quasi-monotonicity. We first establish the existence of non-critical traveling waves (waves with speeds c>c*, where c* is minimal speed). Then by using the weighted energy method with a suitably selected weight function, we prove that all noncritical traveling waves Φ(x+ct) (monotone or nonmonotone) are time-asymptotically stable, when the initial perturbations around the wavefronts in a certain weighted Sobolev space are small.

Citation: Zhao-Xing Yang, Guo-Bao Zhang, Ge Tian, Zhaosheng Feng. Stability of non-monotone non-critical traveling waves in discrete reaction-diffusion equations with time delay. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 581-603. doi: 10.3934/dcdss.2017029
References:
[1]

X. Chen and J.-S. Guo, Existence and asymptotic stability of traveling waves of discrete quasilinear monostable equations, J. Differential Equations, 184 (2002), 549-569.  doi: 10.1006/jdeq.2001.4153.  Google Scholar

[2]

X. ChenS.-C. Fu and J.-S. Guo, Uniqueness and asymptotics of traveling waves of monostable dynamics on lattices, SIAM J. Math. Anal., 38 (2006), 233-258.  doi: 10.1137/050627824.  Google Scholar

[3]

I.-Liang. ChernM. MeiX.-F. Yang and Q.-F. Zhang, Stability of non-monotone critical traveling waves for reaction-diffusion equations with time-delay, J. Differential Equations, 259 (2015), 1503-1541.  doi: 10.1016/j.jde.2015.03.003.  Google Scholar

[4]

J. FangJ. Wei and X.-Q. Zhao, Spreading speeds and travelling waves for non-monotone time-delayed lattice equations, Proc. R. Soc. Lond. Ser. A., 466 (2010), 1919-1934.  doi: 10.1098/rspa.2009.0577.  Google Scholar

[5]

J.-S. Guo and Y. Morita, Entire solutions of reaction-diffusion equations and an application to discrete diffusive equations, Discrete Contin. Dyn. Syst., 12 (2005), 193-212.  doi: 10.3934/dcds.2005.12.193.  Google Scholar

[6]

Y.-J. L. Guo, Entire solutions for a discrete diffusive equation, J. Math. Anal. Appl., 347 (2008), 450-458.  doi: 10.1016/j.jmaa.2008.03.076.  Google Scholar

[7]

S. J. Guo and J. Zimmer, Travelling wavefronts in discrete reaction-diffusion equations with nonlocal delay effects, arXiv: 1406.5321v1. doi: 10.1088/0951-7715/28/2/463.  Google Scholar

[8]

S. J. Guo and J. Zimmer, Stability of traveling wavefronts in discrete reaction-diffusion equations with nonlocal delay effects, Nonlinearity, 28 (2015), 463-492.  doi: 10.1088/0951-7715/28/2/463.  Google Scholar

[9]

S. A. Gourley, Linear stability of traveling fronts in an age-structured reaction-diffusion population model, Quart. J. Mech. Appl. Math., 58 (2005), 257-268.  doi: 10.1093/qjmamj/hbi012.  Google Scholar

[10]

S.-B. Hsu and X.-Q. Zhao, Spreading speeds and traveling waves for non-monotone integrodifference equations, SIAM J. Math. Anal., 40 (2008), 776-789.  doi: 10.1137/070703016.  Google Scholar

[11]

R. HuangM. MeiK.-J. Zhang and Q.-F. Zhang, Asymptotic stability of non-monotone traveling waves for time-delayed nonlocal dispersion equations, Discrete Contin. Dyn. Syst., 36 (2016), 1331-1353.  doi: 10.3934/dcds.2016.36.1331.  Google Scholar

[12]

C.-B. Hu and B. Li, Spatial dynamics for lattice differential equations with a shifting habitat, J. Differential Equations, 259 (2015), 1967-1989.  doi: 10.1016/j.jde.2015.03.025.  Google Scholar

[13]

G. Lv and M.-X. Wang, Nonlinear stability of travelling wave fronts for delayed reaction diffusion equations, Nonlinearity, 23 (2010), 845-873.  doi: 10.1088/0951-7715/23/4/005.  Google Scholar

[14]

C.-K. LinC.-T. LinY. P. Lin and M. Mei, Exponential stability of nonmonotone traveling waves for Nicholson's blowflies equation, SIAM J. Math. Anal., 46 (2014), 1053-1084.  doi: 10.1137/120904391.  Google Scholar

[15]

M. MeiJ. W.-H. SoM. Y. Li and S. S. P. Shen, Asymptotic stability of traveling waves for the Nicholson's blowflies equation with diffusion, Proc. Roy. Soc. Edinburgh Sect. A, 134 (2004), 579-594.  doi: 10.1017/S0308210500003358.  Google Scholar

[16]

M. Mei and J. W.-H. So, Stability of strong traveling waves for a nonlocal time-delayed reaction-diffusion equation, Proc. Roy. Soc. Edinburgh Sect. A, 138 (2008), 551-568.  doi: 10.1017/S0308210506000333.  Google Scholar

[17]

S. W. Ma, Traveling waves for non-local delayed diffusion equations via auxiliary equations, J. Differential Equations, 237 (2007), 259-277.  doi: 10.1016/j.jde.2007.03.014.  Google Scholar

[18]

S. W. Ma and X. Zou, Existence, uniqueness and stability of travelling waves in a discrete reaction-diffusion monostable equation with delay, J. Differential Equations, 217 (2005), 54-87.  doi: 10.1016/j.jde.2005.05.004.  Google Scholar

[19]

A. Solar and S. Trofimchuk, Asymptotic convergence to pushed wavefronts in a monostable equation with delayed reaction, Nonlinearity, 28 (2015), 2027-2052.  doi: 10.1088/0951-7715/28/7/2027.  Google Scholar

[20]

E. TrofimchukM. Pinto and S. Trofimchuk, Pushed traveling fronts in monostable equations with monotone delayed reaction, Discrete Contin. Dyn. Syst., 33 (2013), 2169-2187.  doi: 10.3934/dcds.2013.33.2169.  Google Scholar

[21]

E. TrofimchukP. Alvarado and S. Trofimchuk, On the geometry of wave solutions of a delayed reaction-diffusion equation, J. Differential Equations, 246 (2009), 1422-1444.  doi: 10.1016/j.jde.2008.10.023.  Google Scholar

[22]

S.-L. WuW.-T. Li and S.-Y. Liu, Asymptotic stability of traveling wave fronts in nonlocal reaction-diffusion equations with delay, J. Math. Anal. Appl., 360 (2009), 439-458.  doi: 10.1016/j.jmaa.2009.06.061.  Google Scholar

[23]

S.-L. WuH.-Q. Zhao and S.-Y. Liu, Asymptotic stability of traveling waves for delayed reaction-diffusion equations with crossing-monostability, Z. Angew. Math. Phys., 62 (2011), 377-397.  doi: 10.1007/s00033-010-0112-1.  Google Scholar

[24]

J. Wu and X. Zou, Traveling wave fronts of reaction-diffusion systems with delay, J. Dynam. Differential Equations, 13 (2001), 651–687, J. Dynam. Differential Equations, 20 (2008), 531–533 (Erratum). doi: 10.1023/A:1016690424892.  Google Scholar

[25]

G.-B. Zhang and R. Ma, Spreading speeds and traveling waves for a nonlocal dispersal equation with convolution type crossing-monostable nonlinearity, Z. Angew. Math. Phys., 65 (2014), 819-844.  doi: 10.1007/s00033-013-0353-x.  Google Scholar

show all references

References:
[1]

X. Chen and J.-S. Guo, Existence and asymptotic stability of traveling waves of discrete quasilinear monostable equations, J. Differential Equations, 184 (2002), 549-569.  doi: 10.1006/jdeq.2001.4153.  Google Scholar

[2]

X. ChenS.-C. Fu and J.-S. Guo, Uniqueness and asymptotics of traveling waves of monostable dynamics on lattices, SIAM J. Math. Anal., 38 (2006), 233-258.  doi: 10.1137/050627824.  Google Scholar

[3]

I.-Liang. ChernM. MeiX.-F. Yang and Q.-F. Zhang, Stability of non-monotone critical traveling waves for reaction-diffusion equations with time-delay, J. Differential Equations, 259 (2015), 1503-1541.  doi: 10.1016/j.jde.2015.03.003.  Google Scholar

[4]

J. FangJ. Wei and X.-Q. Zhao, Spreading speeds and travelling waves for non-monotone time-delayed lattice equations, Proc. R. Soc. Lond. Ser. A., 466 (2010), 1919-1934.  doi: 10.1098/rspa.2009.0577.  Google Scholar

[5]

J.-S. Guo and Y. Morita, Entire solutions of reaction-diffusion equations and an application to discrete diffusive equations, Discrete Contin. Dyn. Syst., 12 (2005), 193-212.  doi: 10.3934/dcds.2005.12.193.  Google Scholar

[6]

Y.-J. L. Guo, Entire solutions for a discrete diffusive equation, J. Math. Anal. Appl., 347 (2008), 450-458.  doi: 10.1016/j.jmaa.2008.03.076.  Google Scholar

[7]

S. J. Guo and J. Zimmer, Travelling wavefronts in discrete reaction-diffusion equations with nonlocal delay effects, arXiv: 1406.5321v1. doi: 10.1088/0951-7715/28/2/463.  Google Scholar

[8]

S. J. Guo and J. Zimmer, Stability of traveling wavefronts in discrete reaction-diffusion equations with nonlocal delay effects, Nonlinearity, 28 (2015), 463-492.  doi: 10.1088/0951-7715/28/2/463.  Google Scholar

[9]

S. A. Gourley, Linear stability of traveling fronts in an age-structured reaction-diffusion population model, Quart. J. Mech. Appl. Math., 58 (2005), 257-268.  doi: 10.1093/qjmamj/hbi012.  Google Scholar

[10]

S.-B. Hsu and X.-Q. Zhao, Spreading speeds and traveling waves for non-monotone integrodifference equations, SIAM J. Math. Anal., 40 (2008), 776-789.  doi: 10.1137/070703016.  Google Scholar

[11]

R. HuangM. MeiK.-J. Zhang and Q.-F. Zhang, Asymptotic stability of non-monotone traveling waves for time-delayed nonlocal dispersion equations, Discrete Contin. Dyn. Syst., 36 (2016), 1331-1353.  doi: 10.3934/dcds.2016.36.1331.  Google Scholar

[12]

C.-B. Hu and B. Li, Spatial dynamics for lattice differential equations with a shifting habitat, J. Differential Equations, 259 (2015), 1967-1989.  doi: 10.1016/j.jde.2015.03.025.  Google Scholar

[13]

G. Lv and M.-X. Wang, Nonlinear stability of travelling wave fronts for delayed reaction diffusion equations, Nonlinearity, 23 (2010), 845-873.  doi: 10.1088/0951-7715/23/4/005.  Google Scholar

[14]

C.-K. LinC.-T. LinY. P. Lin and M. Mei, Exponential stability of nonmonotone traveling waves for Nicholson's blowflies equation, SIAM J. Math. Anal., 46 (2014), 1053-1084.  doi: 10.1137/120904391.  Google Scholar

[15]

M. MeiJ. W.-H. SoM. Y. Li and S. S. P. Shen, Asymptotic stability of traveling waves for the Nicholson's blowflies equation with diffusion, Proc. Roy. Soc. Edinburgh Sect. A, 134 (2004), 579-594.  doi: 10.1017/S0308210500003358.  Google Scholar

[16]

M. Mei and J. W.-H. So, Stability of strong traveling waves for a nonlocal time-delayed reaction-diffusion equation, Proc. Roy. Soc. Edinburgh Sect. A, 138 (2008), 551-568.  doi: 10.1017/S0308210506000333.  Google Scholar

[17]

S. W. Ma, Traveling waves for non-local delayed diffusion equations via auxiliary equations, J. Differential Equations, 237 (2007), 259-277.  doi: 10.1016/j.jde.2007.03.014.  Google Scholar

[18]

S. W. Ma and X. Zou, Existence, uniqueness and stability of travelling waves in a discrete reaction-diffusion monostable equation with delay, J. Differential Equations, 217 (2005), 54-87.  doi: 10.1016/j.jde.2005.05.004.  Google Scholar

[19]

A. Solar and S. Trofimchuk, Asymptotic convergence to pushed wavefronts in a monostable equation with delayed reaction, Nonlinearity, 28 (2015), 2027-2052.  doi: 10.1088/0951-7715/28/7/2027.  Google Scholar

[20]

E. TrofimchukM. Pinto and S. Trofimchuk, Pushed traveling fronts in monostable equations with monotone delayed reaction, Discrete Contin. Dyn. Syst., 33 (2013), 2169-2187.  doi: 10.3934/dcds.2013.33.2169.  Google Scholar

[21]

E. TrofimchukP. Alvarado and S. Trofimchuk, On the geometry of wave solutions of a delayed reaction-diffusion equation, J. Differential Equations, 246 (2009), 1422-1444.  doi: 10.1016/j.jde.2008.10.023.  Google Scholar

[22]

S.-L. WuW.-T. Li and S.-Y. Liu, Asymptotic stability of traveling wave fronts in nonlocal reaction-diffusion equations with delay, J. Math. Anal. Appl., 360 (2009), 439-458.  doi: 10.1016/j.jmaa.2009.06.061.  Google Scholar

[23]

S.-L. WuH.-Q. Zhao and S.-Y. Liu, Asymptotic stability of traveling waves for delayed reaction-diffusion equations with crossing-monostability, Z. Angew. Math. Phys., 62 (2011), 377-397.  doi: 10.1007/s00033-010-0112-1.  Google Scholar

[24]

J. Wu and X. Zou, Traveling wave fronts of reaction-diffusion systems with delay, J. Dynam. Differential Equations, 13 (2001), 651–687, J. Dynam. Differential Equations, 20 (2008), 531–533 (Erratum). doi: 10.1023/A:1016690424892.  Google Scholar

[25]

G.-B. Zhang and R. Ma, Spreading speeds and traveling waves for a nonlocal dispersal equation with convolution type crossing-monostable nonlinearity, Z. Angew. Math. Phys., 65 (2014), 819-844.  doi: 10.1007/s00033-013-0353-x.  Google Scholar

[1]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[2]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[3]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[4]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[5]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[6]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[7]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[8]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[9]

Hassan Mohammad. A diagonal PRP-type projection method for convex constrained nonlinear monotone equations. Journal of Industrial & Management Optimization, 2021, 17 (1) : 101-116. doi: 10.3934/jimo.2019101

[10]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[11]

Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020108

[12]

Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326

[13]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[14]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[15]

Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020354

[16]

Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080

[17]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[18]

Yuxin Zhang. The spatially heterogeneous diffusive rabies model and its shadow system. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020357

[19]

Wenqiang Zhao, Yijin Zhang. High-order Wong-Zakai approximations for non-autonomous stochastic $ p $-Laplacian equations on $ \mathbb{R}^N $. Communications on Pure & Applied Analysis, 2021, 20 (1) : 243-280. doi: 10.3934/cpaa.2020265

[20]

Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems by stages. Journal of Geometric Mechanics, 2020, 12 (4) : 607-639. doi: 10.3934/jgm.2020029

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (52)
  • HTML views (51)
  • Cited by (3)

[Back to Top]