Advanced Search
Article Contents
Article Contents

Bifurcation analysis of the three-dimensional Hénon map

This work was supported by National Science Foundation of China (No. 61134005, 11272024 and 10971009).
Abstract Full Text(HTML) Figure(9) Related Papers Cited by
  • In this paper, we consider the dynamics of a generalized three-dimensional Hénon map. Necessary and sufficient conditions on the existence and stability of the fixed points of this system are established. By applying the center manifold theorem and bifurcation theory, we show that the system has the fold bifurcation, flip bifurcation, and Neimark-Sacker bifurcation under certain conditions. Numerical simulations are presented to not only show the consistence between examples and our theoretical analysis, but also exhibit complexity and interesting dynamical behaviors, including period-10, -13, -14, -16, -17, -20, and -34 orbits, quasi-periodic orbits, chaotic behaviors which appear and disappear suddenly, coexisting chaotic attractors. These results demonstrate relatively rich dynamical behaviors of the three-dimensional Hénon map.

    Mathematics Subject Classification: Primary: 37L10, 65P20; Secondary: 65P30.


    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  The stability region and bifurcation region of system (2) in the (b, a)-plane.

    Figure 2.  (A)-(B) bifurcation diagrams of system (2) in the (a, x) plane: (A) b = −0.6, and (B) b = 0.4; (C) bifurcation diagram of system (2) in the (b, x) plane with b ∈ (−0.8, 0.8) and a = 0.2. Here, the fold bifurcation, flip bifurcation and Neimark-Sacker bifurcation are labeled as "SN", "PD" and "NS", respectively.

    Figure 3.  Bifurcation diagrams of system (2) in the threedimensional (a, b, x) space.

    Figure 4.  (A) bifurcation diagram of system (2) in the (a, x) plane (a ∈ (0, 0.4)) for b = −0.6; (B) maximum Lyapunov exponent corresponding to (A); (C) the local amplified bifurcation diagram of (A) for a ∈ (0.22, 0.32).

    Figure 5.  (A)-(H) phase portraits for various values of a corresponding to Figure 4 (A).

    Figure 6.  (A)-(C) phase portraits for a = 0.385 in the (x, y) plane, the (x, z) plane, and the (y, z) plane.

    Figure 7.  (A) bifurcation diagram of system (2) in the (a, x) plane (a ∈ (0, 1)) for b = 0.4; (B) maximum Lyapunov exponent corresponding to (A); (C) the local amplified bifurcation diagram of (A) for a ∈ (0.81, 0.85); (D) maximum Lyapunov exponent corresponding to (C); (E)-(F) chaotic attractors for a = 0.835 and a = 0.8445, respectively.

    Figure 8.  (A) bifurcation diagram of system (2) in the (b, x) plane with b ∈ (−0.8, 0.8) and a = 0.23; (B) maximum Lyapunov exponent corresponding to (A); (C) the local amplified bifurcation diagram of (A) for b ∈ (−0.75, −0.5); (D) maximum Lyapunov exponent corresponding to (C); (E) the local amplified bifurcation diagram of (A) for b ∈ (0.64, 0.7); (F) maximum Lyapunov exponent corresponding to (E).

    Figure 9.  In (A)-(C), phase portraits corresponding to Figure 8 (C): (A) b = −0.72, (B) b = −0.6, and (C) b = −0.53. In (D)-(F), phase portraits corresponding to Figure 8 (E): (D) b = 0.66, (E) b = 0.675, and (F) b = 0.691.

  • [1] H. L. An and Y. Chen, The function cascade synchronization scheme for discrete-time hyperchaotic systems, Commun Nonlinear Sci Numer Simulat, 14 (2009), 1494-1501.  doi: 10.1016/j.cnsns.2008.04.011.
    [2] G. Baier and M. Klein, Maximum hyperchaos in generalized Hénon maps, Phys Lett A, 151 (1990), 281-284.  doi: 10.1016/0375-9601(90)90283-T.
    [3] J. Carr, Applications of Centre Manifold Theory Springer-Verlag, New York, 1981. doi: 0-387-90577-4.
    [4] J. H. Curry, On the Hénon transformation, Commun Math Phys, 68 (1979), 129-140.  doi: 10.1007/BF01418124.
    [5] H. R. Dullin and J. D. Meiss, Generalized Hénon maps: The cubic diffeomorphisms of the plane, Phys D, 143 (2000), 262-289.  doi: 10.1016/S0167-2789(00)00105-6.
    [6] R. L. FilaliS. HammamiM. Benrejeb and P. Borne, On synchronization, anti-synchronization and hybrid synchronization of 3D discrete generalized Hénon map, Nonlinear Dynamics and Systems Theory, 12 (2012), 81-95. 
    [7] A. S. Gonchenko and S. V. Gonchenko, Variety of strange pseudohyperbolic attractors in three-dimensional generalized Hénon maps, Phys. D, 337 (2016), 43–57, arXiv: 1510. 02252v2 doi: 10.1016/j.physd.2016.07.006.
    [8] S. V. GonchenkoI. I. OvsyannikovC. Simó and D. Turaev, Three-dimensional Hénon-like maps and wild Lorenz-like attractors, Int J Bifurcat Chaos, 15 (2005), 3493-3508.  doi: 10.1142/S0218127405014180.
    [9] J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields Springer-Verlag, New York, 1990. doi: 10.1007/978-1-4612-1140-2.
    [10] M. Hénon, A two-dimensional mapping with a strange attractor, Commun math Phys, 50 (1976), 69-77.  doi: 10.1007/BF01608556.
    [11] D. L. Hitzl and F. Zele, An exploration of the Hénon quadratic map, Phys D, 14 (1985), 305-326.  doi: 10.1016/0167-2789(85)90092-2.
    [12] Y. A. Kuznetsov, Elements of Applied Bifurcation Theory 2nd edition, Springer-Verlag, New York, 1998.
    [13] H. K. Lam, Synchronization of generalized Hénon map using polynomial controller, Phys Lett A, 374 (2010), 552-556.  doi: 10.1016/j.physleta.2009.11.035.
    [14] E. N. Lorenz, Compound windows of the Hénon map, Phys D, 237 (2008), 1689-1704.  doi: 10.1016/j.physd.2007.11.014.
    [15] A. C. J. Luo and Y. Guo, Dynamical Systems: Discontinuity, Stochasticity and Time-Delay Springer-Verlag, New York, 2010. doi: 10.1007/978-1-4419-5754-2.
    [16] F. R. Marotto, Chaotic behavior in the Hénon mapping, Commun Math Phys, 68 (1979), 187-194.  doi: 10.1007/BF01418128.
    [17] S. Michael, Once more on Hénon map: Analysis of bifurcations, Chaos, Solitons and Fractals, 7 (1996), 2215-2234.  doi: 10.1016/S0960-0779(96)00081-1.
    [18] C. Mira, Chaotic Dynamics World Scientific, Singapore, 1987. doi: 10.1142/0413.
    [19] E. Ott, Chaos in Dynamical Systems 2nd edition, Cambridge University Press, Cambridge, 2002. doi: 10.1017/CBO9780511803260.
    [20] H. Richter, The generalized Hénon maps: Examples for higher dimensional chaos, Int J Bifurcat Chaos, 12 (2002), 1371-1384.  doi: 10.1142/S0218127402005121.
    [21] C. Robinson, Dynamical Systems: Stability, Symbolic Dynamics, and Chaos CRC Press, New York, 1999.
    [22] S. Smale, Differentiable dynamical systems, Bulletin of the American Mathematical Society, 73 (1967), 747-817.  doi: 10.1090/S0002-9904-1967-11798-1.
    [23] S. Winggins, Introduction to Applied Nonlinear Dynamical System and Chaos Springer-Verlag, New York, 1990. doi: 10.1007/978-1-4757-4067-7.
    [24] Y. J. Xue and S. Y. Yang, Synchronization of generalized Hénon map by using adaptive fuzzy controller, Chaos, Solitons and Fractals, 17 (2003), 717-722.  doi: 10.1016/S0960-0779(02)00490-3.
    [25] Z. Y. Yan, Q-S synchronization in 3D Hénon-like map and generalized Hénon map via a scalar controller, Phys Lett A, 342 (2005), 309-317.  doi: 10.1016/j.physleta.2005.04.049.
  • 加载中



Article Metrics

HTML views(236) PDF downloads(278) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint