August  2017, 10(4): 673-696. doi: 10.3934/dcdss.2017034

Modeling and analysis of reactive multi-component two-phase flows with mass transfer and phase transition the isothermal incompressible case

1. 

Technische Universität Darmstadt, D-64287 Darmstadt, Germany

2. 

Martin-Luther-Universität Halle-Wittenberg, Institut für Mathematik, Theodor-Lieser-Straße 5, D-06120 Halle, Germany

* Corresponding author: Jan Prüss

Received  June 2016 Revised  October 2016 Published  April 2017

Isothermal incompressible multi-component two-phase flows with mass transfer, chemical reactions, and phase transition are modeled based on first principles. It is shown that the resulting system is thermodynamically consistent in the sense that the available energy is a strict Lyapunov functional, and the equilibria are identified. It is proved that the problem is well-posed in an $L_p$-setting, and generates a local semiflow in the proper state manifold. It is further shown that each non-degenerate equilibrium is dynamically stable in the natural state manifold. Finally, it is proved that a solution, which does not develop singularities, exists globally and converges to an equilibrium in the state manifold.

Citation: Dieter Bothe, Jan Prüss. Modeling and analysis of reactive multi-component two-phase flows with mass transfer and phase transition the isothermal incompressible case. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 673-696. doi: 10.3934/dcdss.2017034
References:
[1]

D. Bothe, On the Maxwell-Stefan approach to multicomponent diffusion, Progress in Nonlinear Differential Equation and Their Applications, 80 (2011), 81-93. doi: 10.1007/978-3-0348-0075-4_5. Google Scholar

[2]

D. Bothe and W. Dreyer, Continuum thermodynamics of chemically reacting fluid mixtures, Acta Mechanica, 226 (2015), 1757-1805. doi: 10.1007/s00707-014-1275-1. Google Scholar

[3]

D. Bothe and S. Fleckenstein, A Volume-of-Fluid-based method for mass transfer processes at fluid particles, Chem. Engin. Sci., 101 (2013), 283-302. doi: 10.1016/j.ces.2013.05.029. Google Scholar

[4]

L. BoudinB. Grec and F. Salvarini, A mathematical and numerical analysis of the MaxwellStefan diffusion equations, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), 1427-1440. doi: 10.3934/dcdsb.2012.17.1427. Google Scholar

[5]

W. Dreyer, On jump conditions at phase boundaries for ordered and disordered phases, WIAS preprint 869 (2003).Google Scholar

[6]

V. Giovangigli, Multicomponent Flow Modeling, Birkhäuser, Basel, 1999. doi: 10.1007/978-1-4612-1580-6. Google Scholar

[7]

M. Herberg, M. Meyries, J. Prüss and M. Wilke, Reaction-diffusion systems of Maxwell-Stefan type with reversible mass-action kinetics, Nonlinear Analysis, in press. doi: 10.1016/j.na.2016.07.010. Google Scholar

[8]

M. Ishii, Thermo-Fluid Dynamic Theory of Two-Phase Flow, Eyrolles, Paris 1975.Google Scholar

[9]

R. Krishna and R. Taylor, Multicomponent mass transfer theory and applications, in Handbook for Heat and Mass Transfer, Vol. 2, Chapter 7, Gulf, Houston, 1986.Google Scholar

[10]

R. Krishna and J. Wesselingh, The Maxwell-Stefan approach to mass transfer, Chem. Engin. Sci., 52 (1997), 861-911. doi: 10.1016/S0009-2509(96)00458-7. Google Scholar

[11]

M. KöhneJ. Prüss and M. Wilke, On quasi-linear parabolic evolution equations in weighted Lp-spaces, Journal of Evolution Equations, 10 (2010), 443-463. Google Scholar

[12]

J. LeCroneJ. Prüss and M. Wilke, On quasi-linear parabolic evolution equations in weighted Lp-spaces Ⅱ, Journal of Evolution Equations, 14 (2014), 509-533. Google Scholar

[13]

J. C. Maxwell, On the dynamical theory of gases, Phil. Trans. Roy. Soc. London, 157 (1866), 49-88. Google Scholar

[14]

J. Prüss and G. Simonett, Moving Interfaces and Quasilinear Parabolic Problems, Monographs in Mathematics, 105, Birkhäuser, Basel, 2016.Google Scholar

[15]

J. PrüssG. Simonett and R. Zacher, On convergence of solutions to equilibria for quasi-linear parabolic problems, Journal of Differential Equations, 246 (2009), 3902-3931. Google Scholar

[16]

J. PrüssS. Shimizu and M. Wilke, Qualitative behaviour of incompressible two-phase flows with phase transitions: The case of non-equal densities, Comm. Partial Differential Equations, 39 (2014), 1236-1283. Google Scholar

[17]

J. C. Slattery, Advanced Transport Phenomena, Cambridge Univ. Press, 1999.Google Scholar

[18]

J. Stefan, Über das Gleichgewicht und Bewegung, insbesondere die Diffusion von Gemischen. Sitzungsberichte Kaiserl. Akad. Wiss. Wien, 63 (1871), 63-124. Google Scholar

show all references

References:
[1]

D. Bothe, On the Maxwell-Stefan approach to multicomponent diffusion, Progress in Nonlinear Differential Equation and Their Applications, 80 (2011), 81-93. doi: 10.1007/978-3-0348-0075-4_5. Google Scholar

[2]

D. Bothe and W. Dreyer, Continuum thermodynamics of chemically reacting fluid mixtures, Acta Mechanica, 226 (2015), 1757-1805. doi: 10.1007/s00707-014-1275-1. Google Scholar

[3]

D. Bothe and S. Fleckenstein, A Volume-of-Fluid-based method for mass transfer processes at fluid particles, Chem. Engin. Sci., 101 (2013), 283-302. doi: 10.1016/j.ces.2013.05.029. Google Scholar

[4]

L. BoudinB. Grec and F. Salvarini, A mathematical and numerical analysis of the MaxwellStefan diffusion equations, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), 1427-1440. doi: 10.3934/dcdsb.2012.17.1427. Google Scholar

[5]

W. Dreyer, On jump conditions at phase boundaries for ordered and disordered phases, WIAS preprint 869 (2003).Google Scholar

[6]

V. Giovangigli, Multicomponent Flow Modeling, Birkhäuser, Basel, 1999. doi: 10.1007/978-1-4612-1580-6. Google Scholar

[7]

M. Herberg, M. Meyries, J. Prüss and M. Wilke, Reaction-diffusion systems of Maxwell-Stefan type with reversible mass-action kinetics, Nonlinear Analysis, in press. doi: 10.1016/j.na.2016.07.010. Google Scholar

[8]

M. Ishii, Thermo-Fluid Dynamic Theory of Two-Phase Flow, Eyrolles, Paris 1975.Google Scholar

[9]

R. Krishna and R. Taylor, Multicomponent mass transfer theory and applications, in Handbook for Heat and Mass Transfer, Vol. 2, Chapter 7, Gulf, Houston, 1986.Google Scholar

[10]

R. Krishna and J. Wesselingh, The Maxwell-Stefan approach to mass transfer, Chem. Engin. Sci., 52 (1997), 861-911. doi: 10.1016/S0009-2509(96)00458-7. Google Scholar

[11]

M. KöhneJ. Prüss and M. Wilke, On quasi-linear parabolic evolution equations in weighted Lp-spaces, Journal of Evolution Equations, 10 (2010), 443-463. Google Scholar

[12]

J. LeCroneJ. Prüss and M. Wilke, On quasi-linear parabolic evolution equations in weighted Lp-spaces Ⅱ, Journal of Evolution Equations, 14 (2014), 509-533. Google Scholar

[13]

J. C. Maxwell, On the dynamical theory of gases, Phil. Trans. Roy. Soc. London, 157 (1866), 49-88. Google Scholar

[14]

J. Prüss and G. Simonett, Moving Interfaces and Quasilinear Parabolic Problems, Monographs in Mathematics, 105, Birkhäuser, Basel, 2016.Google Scholar

[15]

J. PrüssG. Simonett and R. Zacher, On convergence of solutions to equilibria for quasi-linear parabolic problems, Journal of Differential Equations, 246 (2009), 3902-3931. Google Scholar

[16]

J. PrüssS. Shimizu and M. Wilke, Qualitative behaviour of incompressible two-phase flows with phase transitions: The case of non-equal densities, Comm. Partial Differential Equations, 39 (2014), 1236-1283. Google Scholar

[17]

J. C. Slattery, Advanced Transport Phenomena, Cambridge Univ. Press, 1999.Google Scholar

[18]

J. Stefan, Über das Gleichgewicht und Bewegung, insbesondere die Diffusion von Gemischen. Sitzungsberichte Kaiserl. Akad. Wiss. Wien, 63 (1871), 63-124. Google Scholar

Figure 1.  A typical geometry
[1]

Eberhard Bänsch, Steffen Basting, Rolf Krahl. Numerical simulation of two-phase flows with heat and mass transfer. Discrete & Continuous Dynamical Systems - A, 2015, 35 (6) : 2325-2347. doi: 10.3934/dcds.2015.35.2325

[2]

Marianne Korten, Charles N. Moore. Regularity for solutions of the two-phase Stefan problem. Communications on Pure & Applied Analysis, 2008, 7 (3) : 591-600. doi: 10.3934/cpaa.2008.7.591

[3]

Ciprian G. Gal, Maurizio Grasselli. Longtime behavior for a model of homogeneous incompressible two-phase flows. Discrete & Continuous Dynamical Systems - A, 2010, 28 (1) : 1-39. doi: 10.3934/dcds.2010.28.1

[4]

Jie Jiang, Yinghua Li, Chun Liu. Two-phase incompressible flows with variable density: An energetic variational approach. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3243-3284. doi: 10.3934/dcds.2017138

[5]

Jan Prüss, Yoshihiro Shibata, Senjo Shimizu, Gieri Simonett. On well-posedness of incompressible two-phase flows with phase transitions: The case of equal densities. Evolution Equations & Control Theory, 2012, 1 (1) : 171-194. doi: 10.3934/eect.2012.1.171

[6]

Giuseppe Riey. Regularity and weak comparison principles for double phase quasilinear elliptic equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (8) : 4863-4873. doi: 10.3934/dcds.2019198

[7]

Tien-Tsan Shieh. From gradient theory of phase transition to a generalized minimal interface problem with a contact energy. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2729-2755. doi: 10.3934/dcds.2016.36.2729

[8]

Theodore Tachim Medjo. On the convergence of a stochastic 3D globally modified two-phase flow model. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 395-430. doi: 10.3934/dcds.2019016

[9]

Michela Eleuteri, Elisabetta Rocca, Giulio Schimperna. On a non-isothermal diffuse interface model for two-phase flows of incompressible fluids. Discrete & Continuous Dynamical Systems - A, 2015, 35 (6) : 2497-2522. doi: 10.3934/dcds.2015.35.2497

[10]

Clément Cancès. On the effects of discontinuous capillarities for immiscible two-phase flows in porous media made of several rock-types. Networks & Heterogeneous Media, 2010, 5 (3) : 635-647. doi: 10.3934/nhm.2010.5.635

[11]

Victor A. Kovtunenko, Anna V. Zubkova. Mathematical modeling of a discontinuous solution of the generalized Poisson-Nernst-Planck problem in a two-phase medium. Kinetic & Related Models, 2018, 11 (1) : 119-135. doi: 10.3934/krm.2018007

[12]

Theodore Tachim Medjo. A two-phase flow model with delays. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3273-3294. doi: 10.3934/dcdsb.2017137

[13]

Jan Prüss, Jürgen Saal, Gieri Simonett. Singular limits for the two-phase Stefan problem. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5379-5405. doi: 10.3934/dcds.2013.33.5379

[14]

Flavia Smarrazzo, Andrea Terracina. Sobolev approximation for two-phase solutions of forward-backward parabolic problems. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1657-1697. doi: 10.3934/dcds.2013.33.1657

[15]

K. Domelevo. Well-posedness of a kinetic model of dispersed two-phase flow with point-particles and stability of travelling waves. Discrete & Continuous Dynamical Systems - B, 2002, 2 (4) : 591-607. doi: 10.3934/dcdsb.2002.2.591

[16]

Feimin Huang, Dehua Wang, Difan Yuan. Nonlinear stability and existence of vortex sheets for inviscid liquid-gas two-phase flow. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3535-3575. doi: 10.3934/dcds.2019146

[17]

Haiyan Yin, Changjiang Zhu. Convergence rate of solutions toward stationary solutions to a viscous liquid-gas two-phase flow model in a half line. Communications on Pure & Applied Analysis, 2015, 14 (5) : 2021-2042. doi: 10.3934/cpaa.2015.14.2021

[18]

Sergiu Aizicovici, Hana Petzeltová. Convergence to equilibria of solutions to a conserved Phase-Field system with memory. Discrete & Continuous Dynamical Systems - S, 2009, 2 (1) : 1-16. doi: 10.3934/dcdss.2009.2.1

[19]

Thomas Leroy. Relativistic transfer equations: Comparison principle and convergence to the non-equilibrium regime. Kinetic & Related Models, 2015, 8 (4) : 725-763. doi: 10.3934/krm.2015.8.725

[20]

T. Tachim Medjo. Averaging of an homogeneous two-phase flow model with oscillating external forces. Discrete & Continuous Dynamical Systems - A, 2012, 32 (10) : 3665-3690. doi: 10.3934/dcds.2012.32.3665

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (15)
  • HTML views (9)
  • Cited by (0)

Other articles
by authors

[Back to Top]