We show the existence of solutions to a system of elliptic PDEs, that was recently introduced to describe the electrothermal behavior of organic semiconductor devices. Here, two difficulties appear: (ⅰ) the elliptic term in the current-flow equation is of p(x)-Laplacian-type with discontinuous exponent p, which limits the use of standard methods, and (ⅱ) in the heat equation, we have to deal with an a priori L1 term on the right hand side describing the Joule heating in the device. We prove the existence of a weak solution under very weak assumptions on the data. Our existence proof is based on Schauder's fixed point theorem and the concept of entropy solutions for the heat equation. Here, the crucial point is the continuous dependence of the entropy solutions on the data of the problem.
Citation: |
[1] | L. Boccardo, T. Gallouët and L. Orsina, Existence and uniqueness of entropy solutions for nonlinear elliptic equations with measure data, Ann. Inst. H. Poincaré Anal. Non Linéaire, 13 (1996), 539-551. doi: 10.1016/S0294-1449(16)30113-5. |
[2] | M. Bulíček, A. Glitzky and M. Liero, Systems describing electrothermal effects with p(x)-Laplace like structure for discontinuous variable exponents, SIAM J. Math. Anal., 48 (2016), 3496-3514. doi: 10.1137/16M1062211. |
[3] | G. Cimatti, Remark on the existence and uniqueness for the thermistor problem under mixed boundary conditions, Quart. Appl. Math., 47 (1989), 117-121. doi: 10.1090/qam/987900. |
[4] | G. Cimatti, Remark on the thermistor problem with rapidly growing conductivity, Applicable Analysis, 80 (2007), 133-140. doi: 10.1080/00036810108840985. |
[5] | L. Diening, P. Harjulehto, P. Hästö and M. Ružička, Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Mathematics, Vol. 2017, Springer, Berlin, 2011. doi: 10.1007/978-3-642-18363-8. |
[6] | A. Fischer, T. Koprucki, K. Gärtner, J. Brückner, B. Lüssem, K. Leo, A. Glitzky and R. Scholz, Feel the heat: Nonlinear electrothermal feedback in organic LEDs, Adv. Funct. Mater., 24 (2014), 3367-3374. doi: 10.1002/adfm.201303066. |
[7] | A. Fischer, P. Pahner, B. Lüssem, K. Leo, R. Scholz, T. Koprucki, K. Gärtner and A. Glitzky, Self-heating, bistability, and thermal switching in organic semiconductors, Phys. Rev. Lett., 110 (2013), 126601. doi: 10.1103/PhysRevLett.110.126601. |
[8] | H. Gajewski, K. Gröger and K. Zacharias, Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen, Akademie-Verlag, Berlin, 1975. doi: 10.1002/mana.19750672207. |
[9] | A. Glitzky and M. Liero, Analysis of p(x)-Laplace thermistor models describing the electrothermal behavior of organic semiconductor devices, Nonlinear Anal. Real World Appl., 34 (2017), 536-562. doi: 10.1016/j.nonrwa.2016.09.015. |
[10] | A. Kufner, O. John and S. Fučik, Function Spaces, Academia Publishing House of the Czechoslovak Academy of Sciences, Prague, 1977. |
[11] | C. Leone and A. Porretta, Entropy solutions for nonlinear elliptic equations in L1, Nonlinear Analysis, Theory, Methods & Applications, 32 (1998), 325-334. doi: 10.1016/S0362-546X(96)00323-9. |
[12] | M. Liero, T. Koprucki, A. Fischer, R. Scholz and A. Glitzky, p-Laplace thermistor modeling of electrothermal feedback in organic semiconductor devices, Zeitschrift für Angewandte Mathematik und Physik, 66 (2015), 2957-2977. doi: 10.1007/s00033-015-0560-8. |
[13] | P. Lindqvist, Notes on the p-Laplace Equation, Report 102, University of Jyväskyla, Department of Mathematics and Statistics, ISBN: 951-39-2586-2,2006. |
[14] | L. Orsina, Elliptic equations with measure data, 2013, URL http://www1.mat.uniroma1.it/people/orsina/AS1213/AS1213.pdf. |
[15] | T. Roubíček, Nonlinear Partial Differential Equations with Applications, International Series of Numerical Mathematics, 153, Springer, Basel, 2013. |