• Previous Article
    Effective acoustic properties of a meta-material consisting of small Helmholtz resonators
  • DCDS-S Home
  • This Issue
  • Next Article
    A Harnack type inequality and a maximum principle for an elliptic-parabolic and forward-backward parabolic De Giorgi class
August  2017, 10(4): 837-852. doi: 10.3934/dcdss.2017042

On the existence of weak solutions of an unsteady p-Laplace thermistor system with strictly monotone electrical conductivities

Department of Mathematics, Humboldt University Berlin, Unter den Linden 6,10099 Berlin, Germany

Received  April 2016 Revised  December 2016 Published  April 2017

Let
$\Omega\subset\mathbb{R}^n$
(
$n=2$
or
$n=3$
) be a bounded domain. We consider the thermistor system
$\text{(1)}\quad \nabla\cdot \boldsymbol{J}=0,\qquad \text{(2)}\quad \frac{\partial u}{\partial t}+\nabla\cdot\boldsymbol{q}=f(x,t,u,\nabla\varphi)\;\text{ in }\; \Omega\times\,]\,0,T\,[\,,$
where (1) is a
$p$
-Laplace type equation for
$\varphi$
(
$u=$
temperature,
$\varphi=$
electrostatic potential). We prove the existence of a weak solution
$(\varphi,u)$
of (1)–(2) under mixed boundary conditions for
$\varphi$
, and a Robin boundary condition and an initial condition for
$u$
.
Citation: Joachim Naumann. On the existence of weak solutions of an unsteady p-Laplace thermistor system with strictly monotone electrical conductivities. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 837-852. doi: 10.3934/dcdss.2017042
References:
[1]

S. N. Antontsev and M. Chipot, The thermistor problem: Existence, smoothness, uniqueness, blowup, SIAM J. Math. Anal., 25 (1994), 1128-1156. doi: 10.1137/S0036141092233482.

[2]

L. Boccardo and F. Murat, Almost everywhere convergence of the gradients of solutions to elliptic and parabolic equations, Nonlin. Anal., T., M. & Appl., 19 (1992), 581-597. doi: 10.1016/0362-546X(92)90023-8.

[3]

L. BoccardoA. Dall'Aglio and T. Gallouët, Nonlinear parabolic equations with measure data, J. Funct. Anal., 147 (1997), 237-258. doi: 10.1006/jfan.1996.3040.

[4]

N. Bourbaki, Éléments de Mathématique, Livre VI, Intégration 1-4, Hermann, Paris, 1965.

[5]

H. Brezis, Opérateurs Maximaux Monotones et Semi-groupes de Contractions Dans Les Espaces de Hilbert, North-Holland Publ. Comp. , Amsterdam, 1973.

[6]

F. E. Browder, Strongly nonlinear parabolic equation of higher order, Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Natur., Rend. Lincei (9) Mat Appl., 77 (1986), 159-172.

[7]

M. Bulíček, A. Glitzky and M. Liero, Systems describing electrothermal effects with p(x)-Laplacian like structure for discontinuous variable exponents, www.wias-berlin.de/publications/wias-publ./no.2206.

[8]

G. Cimatti, Remark on existence and uniqueness for the thermistor problem under mixed boundary conditions, Quarterly Appl. Math., 47 (1989), 117-121. doi: 10.1090/qam/987900.

[9]

G. Cimatti, Existence of weak solutions for the nonstationary problem of the Joule heating of a conductor, Ann. Mat. Pura Appl., 162 (1992), 33-42. doi: 10.1007/BF01759998.

[10]

G. Cimatti, The thermistor problem with Robin boundary condition, Rend. Semin. Mat. Univ. Padova, 135 (2016), 175-199. doi: 10.4171/RSMUP/135-10.

[11]

J. Droniou, Intégration et espaces de Sobolev à valeurs vectorielles, www-gm3.univ-mrs.fr/polys/.

[12]

L. C. Evans, Partial Differential Equations, Amer. Math. Soc. , Providence, R. I. , 1998. doi: 10.1090/gsm/019.

[13]

A. FischerP. PahnerB. LüssemK. LeoR. ScholzT. KopruckiJ. FuhrmannK. Gärtner and A. Glitzky, Self-heating, bistability, and thermal switching in organic semiconductors, Phys. Rev. Lett., 110 (2013), 126601. doi: 10.1103/PhysRevLett.110.126601.

[14]

A. Glitzky and M. Liero, Analysis of p(x)-Laplace thermistor models describing the electrothermal behavior of organic semiconductor devices. www.wias-berlin.de/publications/wias-publ./no.2143.

[15]

S. D. HowisonJ. F. Rodrigues and M. Shillor, Stationary solutions to the thermistor problem, J. Math. Anal. Appl., 174 (1993), 573-588. doi: 10.1006/jmaa.1993.1142.

[16]

K. A. Jenkins and K. Rim, Measurements of the effect of self-heating in strained-silicon MOSFETs, IEEE Electr. Device Lett., 23 (2002), 360-362. doi: 10.1109/LED.2002.1004235.

[17]

J Leray and J. -L. Lions, Quelques résultats de Višik sur les problèmes elliptiques non linéaires par les méthodes de Minty-Browder, Bull. Soc. Math. France, 93 (1965), 97-107.

[18]

M. LieroT. KopruckiA. FischerR. Scholz and A. Glitzky, p-Laplace thermistor modeling of electrothermal feedback in organic semiconductor devices, Z. Angew. Math. Phys., 66 (2015), 2957-2977. doi: 10.1007/s00033-015-0560-8.

[19]

P. Lindqvist, Notes on the p-Laplace Equation, Report. University of Jyväskylä, Department of Mathematics and Statistics, 102. Univ. Jyväskylä, Jyväskylä 2006, 80 pp.

[20]

J. -L. Lions, Quelques Méthodes de Résolution de Problèmes Aux Limites Non Linéaires, Dunod, Gauthier-Villars, Paris, 1969.

[21]

P. Markowich, C. Ringhofer and C. Schmeiser, Semiconductor Equations, Springer-Verlag, Wien, New York, 1990. doi: 10.1007/978-3-7091-6961-2.

[22]

J. Naumann, On the existence of weak solutions to the equations of non-stationary motion of heat-conducting incompressible viscous fluids, Math. Meth. Appl. Sci., 29 (2006), 1883-1906. doi: 10.1002/mma.754.

[23]

J. M. Rakotoson, Some quasilinear parabolic equations, Nonlin. Anal., T. M. & A., 17 (1991), 1163-1175. doi: 10.1016/0362-546X(91)90235-S.

[24]

J. M. Rakotoson, A compactness lemma for quasilinear problems: Application to parabolic equations, J. Funct. Anal., 106 (1992), 358-374. doi: 10.1016/0022-1236(92)90053-L.

[25] M. P. ShawV. V. MitinE. Schöll and H. L. Gubin, The Physics of Instabilities in Solid State Electron Devices, Plenum Press, New York, 1992. doi: 10.1007/978-1-4899-2344-8.
[26]

J. Simon, Compact sets in the spaces Lp(0, T; B), Annali Mat. Pura Appl., 146 (1987), 65-96.

[27]

S. M. Sze and K. Ng Kwok, Physics of Semiconductor Devices, 3rd ed. , J. Wiley, New Jersey, 2007. doi: 10.1063/1.3022205.

[28]

X. Xu, A p-Laplacian problem in L1 with nonlinear boundary conditions, Comm. Partial Differential Equations, 19 (1994), 143-176.

[29]

E. Zeidler, Nonlinear Functional Analysis and Its Applications. Ⅱ/B: Nonlinear Monotone Operators, New York, Berlin, Springer-Verlag, 1990.

show all references

References:
[1]

S. N. Antontsev and M. Chipot, The thermistor problem: Existence, smoothness, uniqueness, blowup, SIAM J. Math. Anal., 25 (1994), 1128-1156. doi: 10.1137/S0036141092233482.

[2]

L. Boccardo and F. Murat, Almost everywhere convergence of the gradients of solutions to elliptic and parabolic equations, Nonlin. Anal., T., M. & Appl., 19 (1992), 581-597. doi: 10.1016/0362-546X(92)90023-8.

[3]

L. BoccardoA. Dall'Aglio and T. Gallouët, Nonlinear parabolic equations with measure data, J. Funct. Anal., 147 (1997), 237-258. doi: 10.1006/jfan.1996.3040.

[4]

N. Bourbaki, Éléments de Mathématique, Livre VI, Intégration 1-4, Hermann, Paris, 1965.

[5]

H. Brezis, Opérateurs Maximaux Monotones et Semi-groupes de Contractions Dans Les Espaces de Hilbert, North-Holland Publ. Comp. , Amsterdam, 1973.

[6]

F. E. Browder, Strongly nonlinear parabolic equation of higher order, Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Natur., Rend. Lincei (9) Mat Appl., 77 (1986), 159-172.

[7]

M. Bulíček, A. Glitzky and M. Liero, Systems describing electrothermal effects with p(x)-Laplacian like structure for discontinuous variable exponents, www.wias-berlin.de/publications/wias-publ./no.2206.

[8]

G. Cimatti, Remark on existence and uniqueness for the thermistor problem under mixed boundary conditions, Quarterly Appl. Math., 47 (1989), 117-121. doi: 10.1090/qam/987900.

[9]

G. Cimatti, Existence of weak solutions for the nonstationary problem of the Joule heating of a conductor, Ann. Mat. Pura Appl., 162 (1992), 33-42. doi: 10.1007/BF01759998.

[10]

G. Cimatti, The thermistor problem with Robin boundary condition, Rend. Semin. Mat. Univ. Padova, 135 (2016), 175-199. doi: 10.4171/RSMUP/135-10.

[11]

J. Droniou, Intégration et espaces de Sobolev à valeurs vectorielles, www-gm3.univ-mrs.fr/polys/.

[12]

L. C. Evans, Partial Differential Equations, Amer. Math. Soc. , Providence, R. I. , 1998. doi: 10.1090/gsm/019.

[13]

A. FischerP. PahnerB. LüssemK. LeoR. ScholzT. KopruckiJ. FuhrmannK. Gärtner and A. Glitzky, Self-heating, bistability, and thermal switching in organic semiconductors, Phys. Rev. Lett., 110 (2013), 126601. doi: 10.1103/PhysRevLett.110.126601.

[14]

A. Glitzky and M. Liero, Analysis of p(x)-Laplace thermistor models describing the electrothermal behavior of organic semiconductor devices. www.wias-berlin.de/publications/wias-publ./no.2143.

[15]

S. D. HowisonJ. F. Rodrigues and M. Shillor, Stationary solutions to the thermistor problem, J. Math. Anal. Appl., 174 (1993), 573-588. doi: 10.1006/jmaa.1993.1142.

[16]

K. A. Jenkins and K. Rim, Measurements of the effect of self-heating in strained-silicon MOSFETs, IEEE Electr. Device Lett., 23 (2002), 360-362. doi: 10.1109/LED.2002.1004235.

[17]

J Leray and J. -L. Lions, Quelques résultats de Višik sur les problèmes elliptiques non linéaires par les méthodes de Minty-Browder, Bull. Soc. Math. France, 93 (1965), 97-107.

[18]

M. LieroT. KopruckiA. FischerR. Scholz and A. Glitzky, p-Laplace thermistor modeling of electrothermal feedback in organic semiconductor devices, Z. Angew. Math. Phys., 66 (2015), 2957-2977. doi: 10.1007/s00033-015-0560-8.

[19]

P. Lindqvist, Notes on the p-Laplace Equation, Report. University of Jyväskylä, Department of Mathematics and Statistics, 102. Univ. Jyväskylä, Jyväskylä 2006, 80 pp.

[20]

J. -L. Lions, Quelques Méthodes de Résolution de Problèmes Aux Limites Non Linéaires, Dunod, Gauthier-Villars, Paris, 1969.

[21]

P. Markowich, C. Ringhofer and C. Schmeiser, Semiconductor Equations, Springer-Verlag, Wien, New York, 1990. doi: 10.1007/978-3-7091-6961-2.

[22]

J. Naumann, On the existence of weak solutions to the equations of non-stationary motion of heat-conducting incompressible viscous fluids, Math. Meth. Appl. Sci., 29 (2006), 1883-1906. doi: 10.1002/mma.754.

[23]

J. M. Rakotoson, Some quasilinear parabolic equations, Nonlin. Anal., T. M. & A., 17 (1991), 1163-1175. doi: 10.1016/0362-546X(91)90235-S.

[24]

J. M. Rakotoson, A compactness lemma for quasilinear problems: Application to parabolic equations, J. Funct. Anal., 106 (1992), 358-374. doi: 10.1016/0022-1236(92)90053-L.

[25] M. P. ShawV. V. MitinE. Schöll and H. L. Gubin, The Physics of Instabilities in Solid State Electron Devices, Plenum Press, New York, 1992. doi: 10.1007/978-1-4899-2344-8.
[26]

J. Simon, Compact sets in the spaces Lp(0, T; B), Annali Mat. Pura Appl., 146 (1987), 65-96.

[27]

S. M. Sze and K. Ng Kwok, Physics of Semiconductor Devices, 3rd ed. , J. Wiley, New Jersey, 2007. doi: 10.1063/1.3022205.

[28]

X. Xu, A p-Laplacian problem in L1 with nonlinear boundary conditions, Comm. Partial Differential Equations, 19 (1994), 143-176.

[29]

E. Zeidler, Nonlinear Functional Analysis and Its Applications. Ⅱ/B: Nonlinear Monotone Operators, New York, Berlin, Springer-Verlag, 1990.

[1]

Genni Fragnelli, Dimitri Mugnai, Nikolaos S. Papageorgiou. Robin problems for the p-Laplacian with gradient dependence. Discrete & Continuous Dynamical Systems - S, 2019, 12 (2) : 287-295. doi: 10.3934/dcdss.2019020

[2]

Wen Tan. The regularity of pullback attractor for a non-autonomous p-Laplacian equation with dynamical boundary condition. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 529-546. doi: 10.3934/dcdsb.2018194

[3]

Everaldo S. de Medeiros, Jianfu Yang. Asymptotic behavior of solutions to a perturbed p-Laplacian problem with Neumann condition. Discrete & Continuous Dynamical Systems - A, 2005, 12 (4) : 595-606. doi: 10.3934/dcds.2005.12.595

[4]

Nikolaos S. Papageorgiou, Vicenţiu D. Rǎdulescu, Dušan D. Repovš. Nodal solutions for the Robin p-Laplacian plus an indefinite potential and a general reaction term. Communications on Pure & Applied Analysis, 2018, 17 (1) : 231-241. doi: 10.3934/cpaa.2018014

[5]

Dimitri Mugnai. Bounce on a p-Laplacian. Communications on Pure & Applied Analysis, 2003, 2 (3) : 371-379. doi: 10.3934/cpaa.2003.2.371

[6]

Lingyu Jin, Yan Li. A Hopf's lemma and the boundary regularity for the fractional p-Laplacian. Discrete & Continuous Dynamical Systems - A, 2019, 39 (3) : 1477-1495. doi: 10.3934/dcds.2019063

[7]

Bernd Kawohl, Jiří Horák. On the geometry of the p-Laplacian operator. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 799-813. doi: 10.3934/dcdss.2017040

[8]

VicenŢiu D. RǍdulescu, Somayeh Saiedinezhad. A nonlinear eigenvalue problem with $ p(x) $-growth and generalized Robin boundary value condition. Communications on Pure & Applied Analysis, 2018, 17 (1) : 39-52. doi: 10.3934/cpaa.2018003

[9]

Zuodong Yang, Jing Mo, Subei Li. Positive solutions of $p$-Laplacian equations with nonlinear boundary condition. Discrete & Continuous Dynamical Systems - B, 2011, 16 (2) : 623-636. doi: 10.3934/dcdsb.2011.16.623

[10]

Leszek Gasiński. Positive solutions for resonant boundary value problems with the scalar p-Laplacian and nonsmooth potential. Discrete & Continuous Dynamical Systems - A, 2007, 17 (1) : 143-158. doi: 10.3934/dcds.2007.17.143

[11]

Eun Kyoung Lee, R. Shivaji, Inbo Sim, Byungjae Son. Analysis of positive solutions for a class of semipositone p-Laplacian problems with nonlinear boundary conditions. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1139-1154. doi: 10.3934/cpaa.2019055

[12]

Yansheng Zhong, Yongqing Li. On a p-Laplacian eigenvalue problem with supercritical exponent. Communications on Pure & Applied Analysis, 2019, 18 (1) : 227-236. doi: 10.3934/cpaa.2019012

[13]

Francesca Colasuonno, Benedetta Noris. A p-Laplacian supercritical Neumann problem. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3025-3057. doi: 10.3934/dcds.2017130

[14]

Raffaela Capitanelli. Robin boundary condition on scale irregular fractals. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1221-1234. doi: 10.3934/cpaa.2010.9.1221

[15]

Patrizia Pucci, Mingqi Xiang, Binlin Zhang. A diffusion problem of Kirchhoff type involving the nonlocal fractional p-Laplacian. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 4035-4051. doi: 10.3934/dcds.2017171

[16]

Robert Stegliński. On homoclinic solutions for a second order difference equation with p-Laplacian. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 487-492. doi: 10.3934/dcdsb.2018033

[17]

CÉSAR E. TORRES LEDESMA. Existence and symmetry result for fractional p-Laplacian in $\mathbb{R}^{n}$. Communications on Pure & Applied Analysis, 2017, 16 (1) : 99-114. doi: 10.3934/cpaa.2017004

[18]

Sophia Th. Kyritsi, Nikolaos S. Papageorgiou. Positive solutions for p-Laplacian equations with concave terms. Conference Publications, 2011, 2011 (Special) : 922-930. doi: 10.3934/proc.2011.2011.922

[19]

Shanming Ji, Yutian Li, Rui Huang, Xuejing Yin. Singular periodic solutions for the p-laplacian ina punctured domain. Communications on Pure & Applied Analysis, 2017, 16 (2) : 373-392. doi: 10.3934/cpaa.2017019

[20]

Maya Chhetri, D. D. Hai, R. Shivaji. On positive solutions for classes of p-Laplacian semipositone systems. Discrete & Continuous Dynamical Systems - A, 2003, 9 (4) : 1063-1071. doi: 10.3934/dcds.2003.9.1063

2017 Impact Factor: 0.561

Metrics

  • PDF downloads (14)
  • HTML views (2)
  • Cited by (0)

Other articles
by authors

[Back to Top]