• Previous Article
    On the existence of weak solutions of an unsteady p-Laplace thermistor system with strictly monotone electrical conductivities
  • DCDS-S Home
  • This Issue
  • Next Article
    An energy-conserving time-discretisation scheme for poroelastic media with phase-field fracture emitting waves and heat
August  2017, 10(4): 853-866. doi: 10.3934/dcdss.2017043

A Harnack type inequality and a maximum principle for an elliptic-parabolic and forward-backward parabolic De Giorgi class

Dipartimento di Matematica "Tullio Levi Civita, " Università di Padova, via, Trieste 63,35121, Padova, Italy

Received  April 2016 Revised  September 2016 Published  April 2017

We define a homogeneous parabolic De Giorgi class of order 2 which suits a mixed type class of evolution equations whose simplest example is $\mu (x) \frac{\partial u}{\partial t} - \Delta u = 0$ where $\mu$ can be positive, null and negative. The functions belonging to this class are local bounded and satisfy a Harnack type inequality. Interesting by-products are Hölder-continuity, at least in the "evolutionary" part of $\Omega$ and in particular in the interface $I$ where $\mu$ change sign, and an interesting maximum principle.

Citation: Fabio Paronetto. A Harnack type inequality and a maximum principle for an elliptic-parabolic and forward-backward parabolic De Giorgi class. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 853-866. doi: 10.3934/dcdss.2017043
References:
[1]

E. B. FabesC. E. Kenig and R. Serapioni, The local regularity of solutions of degenerate elliptic equations, Comm. Partial Differential Equations, 7 (1982), 77-116. doi: 10.1080/03605308208820218.

[2]

J. Garcia Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland, Amsterdam, 1985.

[3]

E. Giusti, Direct Methods in the Calculus of Variations, World Scientific Publishing Co. Inc. , River Edge, NJ, 2003. doi: 10.1142/5002.

[4]

C. E. Gutiérrez and R. L. Wheeden, Mean value and Harnak inequalities for degenerate parabolic equations, Colloq. Math., 60/61 (1990), 157-194.

[5]

F. Paronetto, Homogenization of degenerate elliptic-parabolic equations, Asymptotic Anal., 37 (2004), 21-56.

[6]

F. Paronetto, A Harnack's inequality and Hölder continuity for solutions of mixed type evolution equations, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 26 (2015), 385-395. doi: 10.4171/RLM/711.

[7]

F. Paronetto, A Harnack's inequality for mixed type evolution equations, J. Differential Equations, 260 (2016), 5259-5355. doi: 10.1016/j.jde.2015.12.003.

show all references

References:
[1]

E. B. FabesC. E. Kenig and R. Serapioni, The local regularity of solutions of degenerate elliptic equations, Comm. Partial Differential Equations, 7 (1982), 77-116. doi: 10.1080/03605308208820218.

[2]

J. Garcia Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland, Amsterdam, 1985.

[3]

E. Giusti, Direct Methods in the Calculus of Variations, World Scientific Publishing Co. Inc. , River Edge, NJ, 2003. doi: 10.1142/5002.

[4]

C. E. Gutiérrez and R. L. Wheeden, Mean value and Harnak inequalities for degenerate parabolic equations, Colloq. Math., 60/61 (1990), 157-194.

[5]

F. Paronetto, Homogenization of degenerate elliptic-parabolic equations, Asymptotic Anal., 37 (2004), 21-56.

[6]

F. Paronetto, A Harnack's inequality and Hölder continuity for solutions of mixed type evolution equations, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 26 (2015), 385-395. doi: 10.4171/RLM/711.

[7]

F. Paronetto, A Harnack's inequality for mixed type evolution equations, J. Differential Equations, 260 (2016), 5259-5355. doi: 10.1016/j.jde.2015.12.003.

Figure 1.  The sets involved in the estimates of points $i)$ and $ii)$ of Theorem 4.1
[1]

Pablo Raúl Stinga, Chao Zhang. Harnack's inequality for fractional nonlocal equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 3153-3170. doi: 10.3934/dcds.2013.33.3153

[2]

Ping Li, Pablo Raúl Stinga, José L. Torrea. On weighted mixed-norm Sobolev estimates for some basic parabolic equations. Communications on Pure & Applied Analysis, 2017, 16 (3) : 855-882. doi: 10.3934/cpaa.2017041

[3]

Giuseppe Di Fazio, Maria Stella Fanciullo, Pietro Zamboni. Harnack inequality for degenerate elliptic equations and sum operators. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2363-2376. doi: 10.3934/cpaa.2015.14.2363

[4]

Doyoon Kim, Hongjie Dong, Hong Zhang. Neumann problem for non-divergence elliptic and parabolic equations with BMO$_x$ coefficients in weighted Sobolev spaces. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 4895-4914. doi: 10.3934/dcds.2016011

[5]

Luis Silvestre. Hölder continuity for integro-differential parabolic equations with polynomial growth respect to the gradient. Discrete & Continuous Dynamical Systems - A, 2010, 28 (3) : 1069-1081. doi: 10.3934/dcds.2010.28.1069

[6]

Angelo Favini, Rabah Labbas, Stéphane Maingot, Hiroki Tanabe, Atsushi Yagi. Necessary and sufficient conditions for maximal regularity in the study of elliptic differential equations in Hölder spaces. Discrete & Continuous Dynamical Systems - A, 2008, 22 (4) : 973-987. doi: 10.3934/dcds.2008.22.973

[7]

Simona Fornaro, Maria Sosio, Vincenzo Vespri. Harnack type inequalities for some doubly nonlinear singular parabolic equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5909-5926. doi: 10.3934/dcds.2015.35.5909

[8]

Peter Weidemaier. Maximal regularity for parabolic equations with inhomogeneous boundary conditions in Sobolev spaces with mixed $L_p$-norm. Electronic Research Announcements, 2002, 8: 47-51.

[9]

Francesca Da Lio. Remarks on the strong maximum principle for viscosity solutions to fully nonlinear parabolic equations. Communications on Pure & Applied Analysis, 2004, 3 (3) : 395-415. doi: 10.3934/cpaa.2004.3.395

[10]

Kyudong Choi. Persistence of Hölder continuity for non-local integro-differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 1741-1771. doi: 10.3934/dcds.2013.33.1741

[11]

Jiabao Su, Rushun Tian. Weighted Sobolev embeddings and radial solutions of inhomogeneous quasilinear elliptic equations. Communications on Pure & Applied Analysis, 2010, 9 (4) : 885-904. doi: 10.3934/cpaa.2010.9.885

[12]

Luca Lorenzi. Optimal Hölder regularity for nonautonomous Kolmogorov equations. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 169-191. doi: 10.3934/dcdss.2011.4.169

[13]

Xiaojun Li, Xiliang Li, Kening Lu. Random attractors for stochastic parabolic equations with additive noise in weighted spaces. Communications on Pure & Applied Analysis, 2018, 17 (3) : 729-749. doi: 10.3934/cpaa.2018038

[14]

Jinggang Tan, Jingang Xiong. A Harnack inequality for fractional Laplace equations with lower order terms. Discrete & Continuous Dynamical Systems - A, 2011, 31 (3) : 975-983. doi: 10.3934/dcds.2011.31.975

[15]

Alberto Fiorenza, Anna Mercaldo, Jean Michel Rakotoson. Regularity and uniqueness results in grand Sobolev spaces for parabolic equations with measure data. Discrete & Continuous Dynamical Systems - A, 2002, 8 (4) : 893-906. doi: 10.3934/dcds.2002.8.893

[16]

Alan V. Lair, Ahmed Mohammed. Entire large solutions of semilinear elliptic equations of mixed type. Communications on Pure & Applied Analysis, 2009, 8 (5) : 1607-1618. doi: 10.3934/cpaa.2009.8.1607

[17]

Chérif Amrouche, Mohamed Meslameni, Šárka Nečasová. Linearized Navier-Stokes equations in $\mathbb{R}^3$: An approach in weighted Sobolev spaces. Discrete & Continuous Dynamical Systems - S, 2014, 7 (5) : 901-916. doi: 10.3934/dcdss.2014.7.901

[18]

Emmanuele DiBenedetto, Ugo Gianazza and Vincenzo Vespri. Intrinsic Harnack estimates for nonnegative local solutions of degenerate parabolic equations. Electronic Research Announcements, 2006, 12: 95-99.

[19]

Zaiyun Peng, Xinmin Yang, Kok Lay Teo. On the Hölder continuity of approximate solution mappings to parametric weak generalized Ky Fan Inequality. Journal of Industrial & Management Optimization, 2015, 11 (2) : 549-562. doi: 10.3934/jimo.2015.11.549

[20]

Jesus Idelfonso Díaz, Jean Michel Rakotoson. On very weak solutions of semi-linear elliptic equations in the framework of weighted spaces with respect to the distance to the boundary. Discrete & Continuous Dynamical Systems - A, 2010, 27 (3) : 1037-1058. doi: 10.3934/dcds.2010.27.1037

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (8)
  • HTML views (6)
  • Cited by (1)

Other articles
by authors

[Back to Top]