• Previous Article
    An energy-conserving time-discretisation scheme for poroelastic media with phase-field fracture emitting waves and heat
  • DCDS-S Home
  • This Issue
  • Next Article
    On the existence of weak solutions of an unsteady p-Laplace thermistor system with strictly monotone electrical conductivities
August  2017, 10(4): 853-866. doi: 10.3934/dcdss.2017043

A Harnack type inequality and a maximum principle for an elliptic-parabolic and forward-backward parabolic De Giorgi class

Dipartimento di Matematica "Tullio Levi Civita, " Università di Padova, via, Trieste 63,35121, Padova, Italy

Received  April 2016 Revised  September 2016 Published  April 2017

We define a homogeneous parabolic De Giorgi class of order 2 which suits a mixed type class of evolution equations whose simplest example is $\mu (x) \frac{\partial u}{\partial t} - \Delta u = 0$ where $\mu$ can be positive, null and negative. The functions belonging to this class are local bounded and satisfy a Harnack type inequality. Interesting by-products are Hölder-continuity, at least in the "evolutionary" part of $\Omega$ and in particular in the interface $I$ where $\mu$ change sign, and an interesting maximum principle.

Citation: Fabio Paronetto. A Harnack type inequality and a maximum principle for an elliptic-parabolic and forward-backward parabolic De Giorgi class. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 853-866. doi: 10.3934/dcdss.2017043
References:
[1]

E. B. FabesC. E. Kenig and R. Serapioni, The local regularity of solutions of degenerate elliptic equations, Comm. Partial Differential Equations, 7 (1982), 77-116.  doi: 10.1080/03605308208820218.  Google Scholar

[2]

J. Garcia Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland, Amsterdam, 1985. Google Scholar

[3]

E. Giusti, Direct Methods in the Calculus of Variations, World Scientific Publishing Co. Inc. , River Edge, NJ, 2003. doi: 10.1142/5002.  Google Scholar

[4]

C. E. Gutiérrez and R. L. Wheeden, Mean value and Harnak inequalities for degenerate parabolic equations, Colloq. Math., 60/61 (1990), 157-194.   Google Scholar

[5]

F. Paronetto, Homogenization of degenerate elliptic-parabolic equations, Asymptotic Anal., 37 (2004), 21-56.   Google Scholar

[6]

F. Paronetto, A Harnack's inequality and Hölder continuity for solutions of mixed type evolution equations, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 26 (2015), 385-395.  doi: 10.4171/RLM/711.  Google Scholar

[7]

F. Paronetto, A Harnack's inequality for mixed type evolution equations, J. Differential Equations, 260 (2016), 5259-5355.  doi: 10.1016/j.jde.2015.12.003.  Google Scholar

show all references

References:
[1]

E. B. FabesC. E. Kenig and R. Serapioni, The local regularity of solutions of degenerate elliptic equations, Comm. Partial Differential Equations, 7 (1982), 77-116.  doi: 10.1080/03605308208820218.  Google Scholar

[2]

J. Garcia Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland, Amsterdam, 1985. Google Scholar

[3]

E. Giusti, Direct Methods in the Calculus of Variations, World Scientific Publishing Co. Inc. , River Edge, NJ, 2003. doi: 10.1142/5002.  Google Scholar

[4]

C. E. Gutiérrez and R. L. Wheeden, Mean value and Harnak inequalities for degenerate parabolic equations, Colloq. Math., 60/61 (1990), 157-194.   Google Scholar

[5]

F. Paronetto, Homogenization of degenerate elliptic-parabolic equations, Asymptotic Anal., 37 (2004), 21-56.   Google Scholar

[6]

F. Paronetto, A Harnack's inequality and Hölder continuity for solutions of mixed type evolution equations, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 26 (2015), 385-395.  doi: 10.4171/RLM/711.  Google Scholar

[7]

F. Paronetto, A Harnack's inequality for mixed type evolution equations, J. Differential Equations, 260 (2016), 5259-5355.  doi: 10.1016/j.jde.2015.12.003.  Google Scholar

Figure 1.  The sets involved in the estimates of points $i)$ and $ii)$ of Theorem 4.1
[1]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[2]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[3]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[4]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[5]

Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020051

[6]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[7]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[8]

Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020354

[9]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[10]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[11]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (1) : 301-317. doi: 10.3934/cpaa.2020267

[12]

Hassan Mohammad. A diagonal PRP-type projection method for convex constrained nonlinear monotone equations. Journal of Industrial & Management Optimization, 2021, 17 (1) : 101-116. doi: 10.3934/jimo.2019101

[13]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[14]

Wei Ouyang, Li Li. Hölder strong metric subregularity and its applications to convergence analysis of inexact Newton methods. Journal of Industrial & Management Optimization, 2021, 17 (1) : 169-184. doi: 10.3934/jimo.2019105

[15]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[16]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[17]

Alessandro Carbotti, Giovanni E. Comi. A note on Riemann-Liouville fractional Sobolev spaces. Communications on Pure & Applied Analysis, 2021, 20 (1) : 17-54. doi: 10.3934/cpaa.2020255

[18]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[19]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

[20]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (36)
  • HTML views (47)
  • Cited by (1)

Other articles
by authors

[Back to Top]