• Previous Article
    Large solutions of parabolic logistic equation with spatial and temporal degeneracies
  • DCDS-S Home
  • This Issue
  • Next Article
    A Harnack type inequality and a maximum principle for an elliptic-parabolic and forward-backward parabolic De Giorgi class
August  2017, 10(4): 867-893. doi: 10.3934/dcdss.2017044

An energy-conserving time-discretisation scheme for poroelastic media with phase-field fracture emitting waves and heat

Institute of Thermomechanics, Czech Academy of Sciences, Dolejškova 5, CZ-182 00 Praha 8, Czech Republic

Received  April 2016 Revised  November 2016 Published  April 2017

Fund Project: This research has been partially supported from the grants 16-03823S "Homogenization and multi-scale computational modelling of flow and nonlinear interactions in porous smart structures" and 14-15264S "Experimentally justified multiscale modelling of shape memory alloys" of Czech Science Foundation, and from the institutional support RVO:61388998 (ČR)

The model of brittle cracks in elastic solids at small strains is approximated by the Ambrosio-Tortorelli functional and then extended into evolution situation to an evolutionary system, involving viscoelasticity, inertia, heat transfer, and coupling with Cahn-Hilliard-type diffusion of a fluid due to Fick's or Darcy's laws. Damage resulting from the approximated crack model is considered rate independent. The fractional-step Crank-Nicolson-type time discretisation is devised to decouple the system in a way so that the energy is conserved even in the discrete scheme. The numerical stability of such a scheme is shown, and also convergence towards suitably defined weak solutions. Various generalizations involving plasticity, healing in damage, or phase transformation are mentioned, too.

Citation: Tomáš Roubíček. An energy-conserving time-discretisation scheme for poroelastic media with phase-field fracture emitting waves and heat. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 867-893. doi: 10.3934/dcdss.2017044
References:
[1]

L. Ambrosio and V. M. Tortorelli, Approximation of functional depending on jumps via by elliptic functionals via Γ-convergence, Comm. Pure Appl. Math., 43 (1990), 999-1036.   Google Scholar

[2]

L. Ambrosio and V. M. Tortorelli, On the approximation of free discontinuity problems, Bollettino Unione Mat. Italiana, 7 (1992), 105-123.   Google Scholar

[3]

M. ArtinaM. FornasierS. Micheletti and S. Perotto, Anisotropic mesh adaptation for crack detection in brittle materials, SIAM J. Sci. Comput., 37 (2015), B633-B659.  doi: 10.1137/140970495.  Google Scholar

[4]

F. AuricchioA. Reali and U. Stefanelli, A three-dimensional model describing stress-induced solid phase transformation with permanent inelasticity, Int. Plasticity J., 23 (2007), 207-226.  doi: 10.1016/j.ijplas.2006.02.012.  Google Scholar

[5]

M. A. Biot, General theory of three-dimensional consolidation, J. Appl. Phys., 12 (1941), 155-164.  doi: 10.1063/1.1712886.  Google Scholar

[6]

L. Boccardo and T. Gallouët, Non-linear elliptic and parabolic equations involving measure data, J. Funct. Anal., 87 (1989), 149-169.  doi: 10.1016/0022-1236(89)90005-0.  Google Scholar

[7]

L. Boccardo and T. Gallouët, Nonlinear elliptic equations with right hand side measures, Comm. Partial Differential Equations, 17 (1992), 641-655.   Google Scholar

[8]

E. BonettiC. HeinemannC. Kraus and A. Segatti, Modeling and analysis of a phase field system for damage and phase separation processes in solids, J. Diff. Equations, 258 (2015), 3928-3959.   Google Scholar

[9]

B. BourdinG. A. Francfort and J. -J. Marigo, Numerical experiments in revisited brittle fracture, J. Mech. Phys. Solids, 48 (2000), 797-826.  doi: 10.1016/S0022-5096(99)00028-9.  Google Scholar

[10]

B. BourdinG. A. Francfort and J. -J. Marigo, The variational approach to fracture, Elasticity J., 91 (2008), 5-148.  doi: 10.1007/978-1-4020-6395-4.  Google Scholar

[11]

B. BourdinC. J. Larsen and C. L. Richardson, A time-discrete model for dynamic fracture based on crack regularization, Int. J. of Fracture, 168 (2011), 133-143.  doi: 10.1007/s10704-010-9562-x.  Google Scholar

[12]

S. BurkeC. Ortner and E. Süli, An adaptive finite element approximation of a generalised Ambrosio-Tortorelli functional, Math. Meth. Models Appl. Sci., 23 (2013), 1663-1697.   Google Scholar

[13]

J. W. Cahn and J. E. Hilliard, Free energy of a uniform system Ⅰ. Interfacial free energy, J. Chem. Phys., 28 (1958), 258-267.   Google Scholar

[14]

J. Crank and P. Nicolson, A practical method for numerical evaluation of solutions of partial differential equations of the heat conduction type, Proc. Camb. Phil. Soc., 43 (1947), 50-67.   Google Scholar

[15]

C. M. Elliott and H. Garcke, On the Cahn-Hilliard equation with degenerate mobility, SIAM J. Math. Anal., 27 (1996), 404-423.  doi: 10.1137/S0036141094267662.  Google Scholar

[16]

I. Faragó, Splitting methods and their application to the abstract Cauchy problems, In Numerical Analysis and Its Application, Lect. Notes Comp. Sci. 3401, pages 35-45. Springer, Berlin, 2005. Google Scholar

[17]

E. Feireisl and J. Málek, On the Navier-Stokes equations with temperature-dependent transport coefficients, Diff. Equations Nonlin. Mech. , pages 14pp. (electronic), Art. ID 90616,2006. Google Scholar

[18]

M. Frost, B. Benešová and P. Sedlák, A microscopically motivated constitutive model for shape memory alloys: formulation, analysis and computations, Math. Mech. of Solids, 2014. doi: 10.1177/1081286514522474.  Google Scholar

[19]

A. Giacomini, Ambrosio-Tortorelli approximation of quasi-static evolution of brittle fractures, Calc. Var. Partial Diff. Eqs., 22 (2005), 129-172.  doi: 10.1007/s00526-004-0269-6.  Google Scholar

[20]

R. Glowinski, J. -L. Lions, and R. Trémolières, Numerical Analysis of Variational Inequalities, North-Holland, Amsterdam, 1981. (French original Dunod, Paris, 1976). Google Scholar

[21]

M. E. Gurtin, Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance, Physica D, 92 (1996), 178-192.  doi: 10.1016/0167-2789(95)00173-5.  Google Scholar

[22]

Y. HamielV. Lyakhovsky and A. Agnon, Coupled evolution of damage and porosity in poroelastic media: theory and applications to deformation of porous rocks, Geophys. J. Int., 156 (2004), 701-713.  doi: 10.1111/j.1365-246X.2004.02172.x.  Google Scholar

[23]

C. Heinemann and C. Kraus, Existence of weak solutions for Cahn-Hilliard systems coupled with elasticity and damage, Adv. Math. Sci. Appl., 21 (2011), 321-359.   Google Scholar

[24]

C. Heinemann and C. Kraus, Degenerating Cahn-Hilliard systems coupled with mechanical effects and complete damage processes, Mathematica Bohemica, 139 (2014), 315-331.   Google Scholar

[25]

C. Heinemann and C. Kraus, Phase Separation Coupled with Damage Processes -Analysis of Phase Field Models in Elastic Media, Springer Fachmedien, Wiesbaden, 2014. Google Scholar

[26]

C. Heinemann and C. Kraus, Existence of weak solutions for a PDE system describing phase separation and damage processes including inertial effects, Discrete and Continuous Dynamical Systems -Series A, 35 (2015), 2565-2590.  doi: 10.3934/dcds.2015.35.2565.  Google Scholar

[27]

C. Heinemann, C. Kraus, E. Rocca and R. Rossi, A temperature-dependent phase-field model for phase separation and damage, Archive for Rational Mechanics and Analysis, arXiv: 1510.03755v1, 2017. doi: 10.1007/s00205-017-1102-7.  Google Scholar

[28]

H. M. HilberT. J. R. Hughes and R. L. Taylor, Improved numerical dissipation for time integration algorithms in structural dynamics, Earthquake Eng. Struct. Dyn., 5 (1977), 283-292.  doi: 10.1002/eqe.4290050306.  Google Scholar

[29]

L. Jakabčin, A visco-elasto-plastic evolution model with regularized fracture, ESAIM Control, Optim., Calc. Var., 22 (2016), 148-168.   Google Scholar

[30]

J. KruisT. Koudelka and T. Krejčí, Multi-physics analyses of selected civil engineering concrete structure, Commun. Comput. Phys., 12 (2012), 885-918.  doi: 10.4208/cicp.031110.080711s.  Google Scholar

[31]

C. J. Larsen, Models for dynamic fracture based on griffith's criterion, In K. Hackl, editor, IUTAM Symp. on Variational Concepts with Appl. to the Mech. of Mater. , pages 131-140. Springer, 2010. doi: 10.1007/978-90-481-9195-6_10.  Google Scholar

[32]

C. J. LarsenC. Ortner and E. Süli, Existence of solution to a regularized model of dynamic fracture, Math. Models Meth. Appl. Sci., 20 (2010), 1021-1048.  doi: 10.1142/S0218202510004520.  Google Scholar

[33]

V. Lyakhovsky and Y. Hamiel, Damage evolution and fluid flow in poroelastic rock, Izvestiya, Physics of the Solid Earth, 43 (2007), 13-23.  doi: 10.1134/S106935130701003X.  Google Scholar

[34]

V. LyakhovskyY. Hamiel and Y. Ben-Zion, A non-local visco-elastic damage model and dynamic fracturing, J. Mech. Phys. Solids, 59 (2011), 1752-1776.  doi: 10.1016/j.jmps.2011.05.016.  Google Scholar

[35]

G. Marchuk, plitting and alternating direction methods, Handbook of Numerical Analysis, 1 (1990), 197-462.  doi: 10.1016/S1570-8659(05)80035-3.  Google Scholar

[36]

A. Mielke, Evolution in rate-independent systems (Ch. 6), In C. Dafermos and E. Feireisl, editors, Handbook of Differential Equations, Evolutionary Equations, , vol. 2, pages 461-559. Elsevier B. V. , Amsterdam, 2005. Google Scholar

[37]

A. Mielke and T. Roubíček, Rate-Independent Systems -Theory and Application, Springer, New York, 2015. Google Scholar

[38]

A. MielkeT. Roubíček and U. Stefanelli, Γ-limits and relaxations for rate-independent evolutionary problems, Calc. Var. Part. Diff. Eqns., 31 (2008), 387-416.   Google Scholar

[39]

A. Mielke and F. Theil, On rate-independent hysteresis models, Nonl. Diff. Eqns. Appl., 11 (2004), 151-189.  doi: 10.1007/s00030-003-1052-7.  Google Scholar

[40]

A. Miranville, A model of Cahn-Hilliard equation based on a microforce balance, C. R. Acad. Sci. Paris Sér. I Math., 328 (1999), 1247-1252.  doi: 10.1016/S0764-4442(99)80448-0.  Google Scholar

[41]

L. Modica and S. Mortola, Il limite nella Γ-convergenza di una famiglia di funzionali ellittici, Boll. Unione Mat. Italiana A, 14 (1977), 526-529.   Google Scholar

[42]

D. Mumford and J. Shah, Optimal approximations by piecewise smooth functions and associated variational problems, Comm. Pure Appl. Math., 42 (1989), 577-685.  doi: 10.1002/cpa.3160420503.  Google Scholar

[43]

A. Novick-Cohen, The Cahn-Hilliard equation, In C. M. Dafermos and E. Feireisl, editors, Handbook of Differential Equations -Evolutionary Equations, chapter 4, pages 201-228. Elsevier, 2008. Google Scholar

[44]

R. Rossi, On two classes of generalized viscous Cahn-Hilliard equations, Comm. Pure Appl. Anal., 4 (2005), 405-430.  doi: 10.3934/cpaa.2005.4.405.  Google Scholar

[45]

T. Roubíček, Rate independent processes in viscous solids at small strains, Math. Methods Appl. Sci., 32 (2009), 825-862.   Google Scholar

[46]

T. Roubíček, Thermodynamics of rate independent processes in viscous solids at small strains, SIAM J. Math. Anal., 42 (2010), 256-297.   Google Scholar

[47]

T. Roubíček, Nonlinear Partial Differential Equations with Applications, Birkhäuser, Basel, 2nd edition, 2013. Google Scholar

[48]

T. Roubíček, Adhesive contact of visco-elastic bodies and defect measures arising by vanishing viscosity, SIAM J. Math. Anal., 45 (2013), 101-126.   Google Scholar

[49]

T. Roubíček and C. G. Panagiotopoulos, Energy-conserving time-discretisation of abstract dynamical problems with applications in continuum mechanics of solids, Numer. Funct. Anal. Optim. , arXiv: 1605.09762, 2016. Google Scholar

[50]

T. Roubíček and G. Tomassetti, Thermomechanics of hydrogen storage in metallic hydrides: Modeling and analysis, Discr. Cont. Dyn. Syst. B, 14 (2014), 2313-2333.   Google Scholar

[51]

T. Roubíček and G. Tomassetti, Thermomechanics of damageable materials under diffusion: Modeling and analysis, Zeit. angew. Math. Phys., 66 (2015), 3535-3572.   Google Scholar

[52]

T. Roubíček and J. Valdman, Perfect plasticity with damage and healing at small strains, its modelling, analysis, and computer implementation, SIAM J. Appl. Math., 75 (2016), 314-340.   Google Scholar

[53]

A. Sadjadpour and K. Bhattacharya, A micromechanics inspired constitutive model for shapememory alloys, Smart Mater. Structures, 16 (2007), 1751-1765.  doi: 10.1088/0964-1726/16/5/030.  Google Scholar

[54]

C. H. Scholz, The Mechanics of Earthquakes and Faulting, Cambridge Univ. Press, Cambridge, 2nd edition, 2002. doi: 10.1017/CBO9780511818516.  Google Scholar

[55]

P. SedlákM. FrostB. BenešováT. B. Zineb and P. Šittner, Thermomechanical model for NiTi-based shape memory alloys including R-phase and material anisotropy under multi-axial loadings, Intl. Plasticity J., 39 (2012), 132-151.   Google Scholar

[56]

J. C. Simo and J. R. Hughes, Computational Inelasticity, Springer, Berlin, 1998. Google Scholar

[57]

G. Stampacchia, Le problème de Dirichlet pour les équations elliptiques du second ordre ô coefficients discontinus, Ann. Inst. Fourier (Grenoble), 15 (1965), 189-258.   Google Scholar

[58]

L. Wang, Foundations of Stress Waves, Elsevier, Amsterdam, 2007. Google Scholar

[59]

N. N. Yanenko, The Method of Fractional Steps, Springer, Berlin, 1971. doi: 10.1007/978-3-642-65108-3.  Google Scholar

show all references

References:
[1]

L. Ambrosio and V. M. Tortorelli, Approximation of functional depending on jumps via by elliptic functionals via Γ-convergence, Comm. Pure Appl. Math., 43 (1990), 999-1036.   Google Scholar

[2]

L. Ambrosio and V. M. Tortorelli, On the approximation of free discontinuity problems, Bollettino Unione Mat. Italiana, 7 (1992), 105-123.   Google Scholar

[3]

M. ArtinaM. FornasierS. Micheletti and S. Perotto, Anisotropic mesh adaptation for crack detection in brittle materials, SIAM J. Sci. Comput., 37 (2015), B633-B659.  doi: 10.1137/140970495.  Google Scholar

[4]

F. AuricchioA. Reali and U. Stefanelli, A three-dimensional model describing stress-induced solid phase transformation with permanent inelasticity, Int. Plasticity J., 23 (2007), 207-226.  doi: 10.1016/j.ijplas.2006.02.012.  Google Scholar

[5]

M. A. Biot, General theory of three-dimensional consolidation, J. Appl. Phys., 12 (1941), 155-164.  doi: 10.1063/1.1712886.  Google Scholar

[6]

L. Boccardo and T. Gallouët, Non-linear elliptic and parabolic equations involving measure data, J. Funct. Anal., 87 (1989), 149-169.  doi: 10.1016/0022-1236(89)90005-0.  Google Scholar

[7]

L. Boccardo and T. Gallouët, Nonlinear elliptic equations with right hand side measures, Comm. Partial Differential Equations, 17 (1992), 641-655.   Google Scholar

[8]

E. BonettiC. HeinemannC. Kraus and A. Segatti, Modeling and analysis of a phase field system for damage and phase separation processes in solids, J. Diff. Equations, 258 (2015), 3928-3959.   Google Scholar

[9]

B. BourdinG. A. Francfort and J. -J. Marigo, Numerical experiments in revisited brittle fracture, J. Mech. Phys. Solids, 48 (2000), 797-826.  doi: 10.1016/S0022-5096(99)00028-9.  Google Scholar

[10]

B. BourdinG. A. Francfort and J. -J. Marigo, The variational approach to fracture, Elasticity J., 91 (2008), 5-148.  doi: 10.1007/978-1-4020-6395-4.  Google Scholar

[11]

B. BourdinC. J. Larsen and C. L. Richardson, A time-discrete model for dynamic fracture based on crack regularization, Int. J. of Fracture, 168 (2011), 133-143.  doi: 10.1007/s10704-010-9562-x.  Google Scholar

[12]

S. BurkeC. Ortner and E. Süli, An adaptive finite element approximation of a generalised Ambrosio-Tortorelli functional, Math. Meth. Models Appl. Sci., 23 (2013), 1663-1697.   Google Scholar

[13]

J. W. Cahn and J. E. Hilliard, Free energy of a uniform system Ⅰ. Interfacial free energy, J. Chem. Phys., 28 (1958), 258-267.   Google Scholar

[14]

J. Crank and P. Nicolson, A practical method for numerical evaluation of solutions of partial differential equations of the heat conduction type, Proc. Camb. Phil. Soc., 43 (1947), 50-67.   Google Scholar

[15]

C. M. Elliott and H. Garcke, On the Cahn-Hilliard equation with degenerate mobility, SIAM J. Math. Anal., 27 (1996), 404-423.  doi: 10.1137/S0036141094267662.  Google Scholar

[16]

I. Faragó, Splitting methods and their application to the abstract Cauchy problems, In Numerical Analysis and Its Application, Lect. Notes Comp. Sci. 3401, pages 35-45. Springer, Berlin, 2005. Google Scholar

[17]

E. Feireisl and J. Málek, On the Navier-Stokes equations with temperature-dependent transport coefficients, Diff. Equations Nonlin. Mech. , pages 14pp. (electronic), Art. ID 90616,2006. Google Scholar

[18]

M. Frost, B. Benešová and P. Sedlák, A microscopically motivated constitutive model for shape memory alloys: formulation, analysis and computations, Math. Mech. of Solids, 2014. doi: 10.1177/1081286514522474.  Google Scholar

[19]

A. Giacomini, Ambrosio-Tortorelli approximation of quasi-static evolution of brittle fractures, Calc. Var. Partial Diff. Eqs., 22 (2005), 129-172.  doi: 10.1007/s00526-004-0269-6.  Google Scholar

[20]

R. Glowinski, J. -L. Lions, and R. Trémolières, Numerical Analysis of Variational Inequalities, North-Holland, Amsterdam, 1981. (French original Dunod, Paris, 1976). Google Scholar

[21]

M. E. Gurtin, Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance, Physica D, 92 (1996), 178-192.  doi: 10.1016/0167-2789(95)00173-5.  Google Scholar

[22]

Y. HamielV. Lyakhovsky and A. Agnon, Coupled evolution of damage and porosity in poroelastic media: theory and applications to deformation of porous rocks, Geophys. J. Int., 156 (2004), 701-713.  doi: 10.1111/j.1365-246X.2004.02172.x.  Google Scholar

[23]

C. Heinemann and C. Kraus, Existence of weak solutions for Cahn-Hilliard systems coupled with elasticity and damage, Adv. Math. Sci. Appl., 21 (2011), 321-359.   Google Scholar

[24]

C. Heinemann and C. Kraus, Degenerating Cahn-Hilliard systems coupled with mechanical effects and complete damage processes, Mathematica Bohemica, 139 (2014), 315-331.   Google Scholar

[25]

C. Heinemann and C. Kraus, Phase Separation Coupled with Damage Processes -Analysis of Phase Field Models in Elastic Media, Springer Fachmedien, Wiesbaden, 2014. Google Scholar

[26]

C. Heinemann and C. Kraus, Existence of weak solutions for a PDE system describing phase separation and damage processes including inertial effects, Discrete and Continuous Dynamical Systems -Series A, 35 (2015), 2565-2590.  doi: 10.3934/dcds.2015.35.2565.  Google Scholar

[27]

C. Heinemann, C. Kraus, E. Rocca and R. Rossi, A temperature-dependent phase-field model for phase separation and damage, Archive for Rational Mechanics and Analysis, arXiv: 1510.03755v1, 2017. doi: 10.1007/s00205-017-1102-7.  Google Scholar

[28]

H. M. HilberT. J. R. Hughes and R. L. Taylor, Improved numerical dissipation for time integration algorithms in structural dynamics, Earthquake Eng. Struct. Dyn., 5 (1977), 283-292.  doi: 10.1002/eqe.4290050306.  Google Scholar

[29]

L. Jakabčin, A visco-elasto-plastic evolution model with regularized fracture, ESAIM Control, Optim., Calc. Var., 22 (2016), 148-168.   Google Scholar

[30]

J. KruisT. Koudelka and T. Krejčí, Multi-physics analyses of selected civil engineering concrete structure, Commun. Comput. Phys., 12 (2012), 885-918.  doi: 10.4208/cicp.031110.080711s.  Google Scholar

[31]

C. J. Larsen, Models for dynamic fracture based on griffith's criterion, In K. Hackl, editor, IUTAM Symp. on Variational Concepts with Appl. to the Mech. of Mater. , pages 131-140. Springer, 2010. doi: 10.1007/978-90-481-9195-6_10.  Google Scholar

[32]

C. J. LarsenC. Ortner and E. Süli, Existence of solution to a regularized model of dynamic fracture, Math. Models Meth. Appl. Sci., 20 (2010), 1021-1048.  doi: 10.1142/S0218202510004520.  Google Scholar

[33]

V. Lyakhovsky and Y. Hamiel, Damage evolution and fluid flow in poroelastic rock, Izvestiya, Physics of the Solid Earth, 43 (2007), 13-23.  doi: 10.1134/S106935130701003X.  Google Scholar

[34]

V. LyakhovskyY. Hamiel and Y. Ben-Zion, A non-local visco-elastic damage model and dynamic fracturing, J. Mech. Phys. Solids, 59 (2011), 1752-1776.  doi: 10.1016/j.jmps.2011.05.016.  Google Scholar

[35]

G. Marchuk, plitting and alternating direction methods, Handbook of Numerical Analysis, 1 (1990), 197-462.  doi: 10.1016/S1570-8659(05)80035-3.  Google Scholar

[36]

A. Mielke, Evolution in rate-independent systems (Ch. 6), In C. Dafermos and E. Feireisl, editors, Handbook of Differential Equations, Evolutionary Equations, , vol. 2, pages 461-559. Elsevier B. V. , Amsterdam, 2005. Google Scholar

[37]

A. Mielke and T. Roubíček, Rate-Independent Systems -Theory and Application, Springer, New York, 2015. Google Scholar

[38]

A. MielkeT. Roubíček and U. Stefanelli, Γ-limits and relaxations for rate-independent evolutionary problems, Calc. Var. Part. Diff. Eqns., 31 (2008), 387-416.   Google Scholar

[39]

A. Mielke and F. Theil, On rate-independent hysteresis models, Nonl. Diff. Eqns. Appl., 11 (2004), 151-189.  doi: 10.1007/s00030-003-1052-7.  Google Scholar

[40]

A. Miranville, A model of Cahn-Hilliard equation based on a microforce balance, C. R. Acad. Sci. Paris Sér. I Math., 328 (1999), 1247-1252.  doi: 10.1016/S0764-4442(99)80448-0.  Google Scholar

[41]

L. Modica and S. Mortola, Il limite nella Γ-convergenza di una famiglia di funzionali ellittici, Boll. Unione Mat. Italiana A, 14 (1977), 526-529.   Google Scholar

[42]

D. Mumford and J. Shah, Optimal approximations by piecewise smooth functions and associated variational problems, Comm. Pure Appl. Math., 42 (1989), 577-685.  doi: 10.1002/cpa.3160420503.  Google Scholar

[43]

A. Novick-Cohen, The Cahn-Hilliard equation, In C. M. Dafermos and E. Feireisl, editors, Handbook of Differential Equations -Evolutionary Equations, chapter 4, pages 201-228. Elsevier, 2008. Google Scholar

[44]

R. Rossi, On two classes of generalized viscous Cahn-Hilliard equations, Comm. Pure Appl. Anal., 4 (2005), 405-430.  doi: 10.3934/cpaa.2005.4.405.  Google Scholar

[45]

T. Roubíček, Rate independent processes in viscous solids at small strains, Math. Methods Appl. Sci., 32 (2009), 825-862.   Google Scholar

[46]

T. Roubíček, Thermodynamics of rate independent processes in viscous solids at small strains, SIAM J. Math. Anal., 42 (2010), 256-297.   Google Scholar

[47]

T. Roubíček, Nonlinear Partial Differential Equations with Applications, Birkhäuser, Basel, 2nd edition, 2013. Google Scholar

[48]

T. Roubíček, Adhesive contact of visco-elastic bodies and defect measures arising by vanishing viscosity, SIAM J. Math. Anal., 45 (2013), 101-126.   Google Scholar

[49]

T. Roubíček and C. G. Panagiotopoulos, Energy-conserving time-discretisation of abstract dynamical problems with applications in continuum mechanics of solids, Numer. Funct. Anal. Optim. , arXiv: 1605.09762, 2016. Google Scholar

[50]

T. Roubíček and G. Tomassetti, Thermomechanics of hydrogen storage in metallic hydrides: Modeling and analysis, Discr. Cont. Dyn. Syst. B, 14 (2014), 2313-2333.   Google Scholar

[51]

T. Roubíček and G. Tomassetti, Thermomechanics of damageable materials under diffusion: Modeling and analysis, Zeit. angew. Math. Phys., 66 (2015), 3535-3572.   Google Scholar

[52]

T. Roubíček and J. Valdman, Perfect plasticity with damage and healing at small strains, its modelling, analysis, and computer implementation, SIAM J. Appl. Math., 75 (2016), 314-340.   Google Scholar

[53]

A. Sadjadpour and K. Bhattacharya, A micromechanics inspired constitutive model for shapememory alloys, Smart Mater. Structures, 16 (2007), 1751-1765.  doi: 10.1088/0964-1726/16/5/030.  Google Scholar

[54]

C. H. Scholz, The Mechanics of Earthquakes and Faulting, Cambridge Univ. Press, Cambridge, 2nd edition, 2002. doi: 10.1017/CBO9780511818516.  Google Scholar

[55]

P. SedlákM. FrostB. BenešováT. B. Zineb and P. Šittner, Thermomechanical model for NiTi-based shape memory alloys including R-phase and material anisotropy under multi-axial loadings, Intl. Plasticity J., 39 (2012), 132-151.   Google Scholar

[56]

J. C. Simo and J. R. Hughes, Computational Inelasticity, Springer, Berlin, 1998. Google Scholar

[57]

G. Stampacchia, Le problème de Dirichlet pour les équations elliptiques du second ordre ô coefficients discontinus, Ann. Inst. Fourier (Grenoble), 15 (1965), 189-258.   Google Scholar

[58]

L. Wang, Foundations of Stress Waves, Elsevier, Amsterdam, 2007. Google Scholar

[59]

N. N. Yanenko, The Method of Fractional Steps, Springer, Berlin, 1971. doi: 10.1007/978-3-642-65108-3.  Google Scholar

Table 1.  Summary of the basic notation used through this paper
$u$ displacements $e(u)=\frac12(\nabla u)^\top+\frac12\nabla u$ small strain tensor
$v$ velocity $M$ Biot modulus
$z$ damage scalar variable $\beta$ Biot coefficient
$c$ concentration $\kappa$ coefficient for the ratio Fick/Darcy flow
$\theta$ temperature $\varkappa$ capillarity coefficient
$\vartheta$ heat content $a$ energy released per unit volume by damage
$\sigma$ stress $\psi=\varphi+\phi$ free energy
$\mu$ chemical potential $\varphi, \phi$ chemo-mechanical and thermal energies
$\mathbb{C}$ elastic-moduli tensor $\mathfrak{u}$ internal energy
$\mathbb{D}$ viscous-moduli tensor $c_{_{\rm E}}$ equilibrium concentration
$\mathbb{M}$ the mobility matrix $g$ bulk force (gravity)
$\mathbb{K}$ the heat-conductivity matrix $f$ traction force
$c_{\rm v}$ heat capacity $h_{_{\rm{B}}}$ prescribed boundary heat flux
$\varrho$ mass density $j_{_{\rm{B}}}$ prescribed boundary diffusant flux
$r$ heat-production rate $\varepsilon >0$ a fixed regularization parameter
$\mathfrak{s}$ entropy $\tau>0$ a time step for discretisation
$u$ displacements $e(u)=\frac12(\nabla u)^\top+\frac12\nabla u$ small strain tensor
$v$ velocity $M$ Biot modulus
$z$ damage scalar variable $\beta$ Biot coefficient
$c$ concentration $\kappa$ coefficient for the ratio Fick/Darcy flow
$\theta$ temperature $\varkappa$ capillarity coefficient
$\vartheta$ heat content $a$ energy released per unit volume by damage
$\sigma$ stress $\psi=\varphi+\phi$ free energy
$\mu$ chemical potential $\varphi, \phi$ chemo-mechanical and thermal energies
$\mathbb{C}$ elastic-moduli tensor $\mathfrak{u}$ internal energy
$\mathbb{D}$ viscous-moduli tensor $c_{_{\rm E}}$ equilibrium concentration
$\mathbb{M}$ the mobility matrix $g$ bulk force (gravity)
$\mathbb{K}$ the heat-conductivity matrix $f$ traction force
$c_{\rm v}$ heat capacity $h_{_{\rm{B}}}$ prescribed boundary heat flux
$\varrho$ mass density $j_{_{\rm{B}}}$ prescribed boundary diffusant flux
$r$ heat-production rate $\varepsilon >0$ a fixed regularization parameter
$\mathfrak{s}$ entropy $\tau>0$ a time step for discretisation
[1]

Sondre Tesdal Galtung. A convergent Crank-Nicolson Galerkin scheme for the Benjamin-Ono equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1243-1268. doi: 10.3934/dcds.2018051

[2]

Alain Miranville. Existence of solutions for Cahn-Hilliard type equations. Conference Publications, 2003, 2003 (Special) : 630-637. doi: 10.3934/proc.2003.2003.630

[3]

Álvaro Hernández, Michał Kowalczyk. Rotationally symmetric solutions to the Cahn-Hilliard equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (2) : 801-827. doi: 10.3934/dcds.2017033

[4]

Georgia Karali, Yuko Nagase. On the existence of solution for a Cahn-Hilliard/Allen-Cahn equation. Discrete & Continuous Dynamical Systems - S, 2014, 7 (1) : 127-137. doi: 10.3934/dcdss.2014.7.127

[5]

Dimitra Antonopoulou, Georgia Karali. Existence of solution for a generalized stochastic Cahn-Hilliard equation on convex domains. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 31-55. doi: 10.3934/dcdsb.2011.16.31

[6]

Andreas C. Aristotelous, Ohannes Karakashian, Steven M. Wise. A mixed discontinuous Galerkin, convex splitting scheme for a modified Cahn-Hilliard equation and an efficient nonlinear multigrid solver. Discrete & Continuous Dynamical Systems - B, 2013, 18 (9) : 2211-2238. doi: 10.3934/dcdsb.2013.18.2211

[7]

Changchun Liu, Hui Tang. Existence of periodic solution for a Cahn-Hilliard/Allen-Cahn equation in two space dimensions. Evolution Equations & Control Theory, 2017, 6 (2) : 219-237. doi: 10.3934/eect.2017012

[8]

Ahmad Makki, Alain Miranville. Existence of solutions for anisotropic Cahn-Hilliard and Allen-Cahn systems in higher space dimensions. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 759-775. doi: 10.3934/dcdss.2016027

[9]

Maurizio Grasselli, Nicolas Lecoq, Morgan Pierre. A long-time stable fully discrete approximation of the Cahn-Hilliard equation with inertial term. Conference Publications, 2011, 2011 (Special) : 543-552. doi: 10.3934/proc.2011.2011.543

[10]

Irena Pawłow, Wojciech M. Zajączkowski. Regular weak solutions to 3-D Cahn-Hilliard system in elastic solids. Conference Publications, 2007, 2007 (Special) : 824-833. doi: 10.3934/proc.2007.2007.824

[11]

Desheng Li, Xuewei Ju. On dynamical behavior of viscous Cahn-Hilliard equation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 2207-2221. doi: 10.3934/dcds.2012.32.2207

[12]

Laurence Cherfils, Alain Miranville, Sergey Zelik. On a generalized Cahn-Hilliard equation with biological applications. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 2013-2026. doi: 10.3934/dcdsb.2014.19.2013

[13]

Dongho Kim, Eun-Jae Park. Adaptive Crank-Nicolson methods with dynamic finite-element spaces for parabolic problems. Discrete & Continuous Dynamical Systems - B, 2008, 10 (4) : 873-886. doi: 10.3934/dcdsb.2008.10.873

[14]

Satoshi Kosugi, Yoshihisa Morita, Shoji Yotsutani. Stationary solutions to the one-dimensional Cahn-Hilliard equation: Proof by the complete elliptic integrals. Discrete & Continuous Dynamical Systems - A, 2007, 19 (4) : 609-629. doi: 10.3934/dcds.2007.19.609

[15]

Kelong Cheng, Cheng Wang, Steven M. Wise, Zixia Yuan. Global-in-time Gevrey regularity solutions for the functionalized Cahn-Hilliard equation. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 0-0. doi: 10.3934/dcdss.2020186

[16]

Annalisa Iuorio, Stefano Melchionna. Long-time behavior of a nonlocal Cahn-Hilliard equation with reaction. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 3765-3788. doi: 10.3934/dcds.2018163

[17]

Dimitra Antonopoulou, Georgia Karali, Georgios T. Kossioris. Asymptotics for a generalized Cahn-Hilliard equation with forcing terms. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1037-1054. doi: 10.3934/dcds.2011.30.1037

[18]

Alain Miranville, Sergey Zelik. The Cahn-Hilliard equation with singular potentials and dynamic boundary conditions. Discrete & Continuous Dynamical Systems - A, 2010, 28 (1) : 275-310. doi: 10.3934/dcds.2010.28.275

[19]

S. Maier-Paape, Ulrich Miller. Connecting continua and curves of equilibria of the Cahn-Hilliard equation on the square. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1137-1153. doi: 10.3934/dcds.2006.15.1137

[20]

Laurence Cherfils, Madalina Petcu, Morgan Pierre. A numerical analysis of the Cahn-Hilliard equation with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - A, 2010, 27 (4) : 1511-1533. doi: 10.3934/dcds.2010.27.1511

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (23)
  • HTML views (15)
  • Cited by (1)

Other articles
by authors

[Back to Top]