\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On the variational representation of monotone operators

Abstract Full Text(HTML) Related Papers Cited by
  • Let $V$ be a Banach space, $z'\in V'$, and $\alpha: V\to {\mathcal P}(V')$ be a maximal monotone operator. A large number of phenomena can be modelled by inclusions of the form $\alpha(u) \ni z'$, or by the associated flow $D_tu + \alpha(u) \ni z'$. Fitzpatrick proved that there exists a lower semicontinuous, convex representative function$f_\alpha: V \!\times\! V'\to \mathbb{R}\cup \{+\infty\}$ such that

    $f_\alpha(v,v') \ge \langle v',v\rangle\quad\;\forall (v,v'), \qquad\quadf_\alpha(v,v') = \langle v',v\rangle\;\;\Leftrightarrow\;\;\; v'\in \alpha(v).$

    This provides a variational formulation for the above inclusions. Here we use this approach to prove two results of existence of a solution, without using the classical theory of maximal monotone operators. This is based on a minimax theorem, and on the duality theory of convex optimization.

    Mathematics Subject Classification: 47H05, 49J40, 58E.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] G. Auchmuty, Saddle-points and existence-uniqueness for evolution equations, Differential Integral Equations, 6 (1993), 1161-1170. 
    [2] C. Baiocchi and A. Capelo, Variational and Quasivariational Inequalities, Applications to Free Boundary Problems, Wiley and Sons, Chichester, 1984.
    [3] V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Noordhoff, Leyden, 1976. doi: 10.1007/978-94-010-1537-0.
    [4] H. H. Bauschke and X. Wang, The kernel average for two convex functions and its applications to the extension and representation of monotone operators, Trans. Amer. Math. Soc., 361 (2009), 5947-5965.  doi: 10.1090/S0002-9947-09-04698-4.
    [5] H. Brezis, Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert, North-Holland, Amsterdam, 1973.
    [6] H. Brezis and I. Ekeland, Un principe variationnel associé à certaines équations paraboliques. Ⅰ. Le cas indépendant du temps and Ⅱ. Le cas dépendant du temps, C. R. Acad. Sci. Paris Sér. A-B, 282 (1976), 971–974, and ibid. 1197–1198.
    [7] F. Browder, Nonlinear Operators and Nonlinear Equations of Evolution in Banach Spaces, Proc. Sympos. Pure Math. , Volume ⅩⅧ, Part Ⅱ, A. M. S. , Providence 1976. doi: 10.1090/S0002-9904-1967-11820-2.
    [8] M. BuligaG. de Saxcé and C. Vallée, Existence and construction of bipotentials for graphs of multivalued laws, J. Convex Anal., 15 (2008), 87-104. 
    [9] R. S. Burachik and B. F. Svaiter, Maximal monotone operators, convex functions, and a special family of enlargements, Set-Valued Analysis, 10 (2002), 297-316. 
    [10] R. S. Burachik and B. F. Svaiter, Maximal monotonicity, conjugation and the duality product, Proc. Amer. Math. Soc., 131 (2003), 2379-2383. 
    [11] I. Ekeland and R. Temam, Analyse Convexe et Problèmes Variationnelles, Dunod GauthierVillars, Paris, 1974.
    [12] K. Fan, A minimax inequality and applications, Inequalities Ⅲ, Proc. Third Sympos. , Univ. California, Los Angeles 1969, pp. 103-113, Academic Press, New York 1972.
    [13] W. Fenchel, Convex Cones, Sets, and Functions, Princeton Univ. , 1953.
    [14] S. Fitzpatrick, Representing monotone operators by convex functions, Workshop/Miniconference on Functional Analysis and Optimization, Canberra, 1988, Proc. Centre Math. Anal. Austral. Nat. Univ., 20 (1988), 59-65. 
    [15] N. Ghoussoub, Selfdual Partial Differential Systems and their Variational Principles, Springer, 2008.
    [16] N. Ghoussoub, A variational theory for monotone vector fields, J. Fixed Point Theory Appl., 4 (2008), 107-135.  doi: 10.1007/s11784-008-0083-4.
    [17] N. Ghoussoub and L. Tzou, A variational principle for gradient flows, Math. Ann., 330 (2004), 519-549.  doi: 10.1007/s00208-004-0558-6.
    [18] J. L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires, Dunod, Paris, 1969.
    [19] J. -E. Martinez-Legaz and M. Théra, A convex representation of maximal monotone operators, J. Nonlinear Convex Anal., 2 (2001), 243-247. 
    [20] J. -E. Martinez-Legaz and B. F. Svaiter, Monotone operators representable by l.s.c. convex functions, Set-Valued Anal., 13 (2005), 21-46.  doi: 10.1007/s11228-004-4170-4.
    [21] J. -E. Martinez-Legaz and B. F. Svaiter, Minimal convex functions bounded below by the duality product, Proc. Amer. Math. Soc., 136 (2008), 873-878.  doi: 10.1090/S0002-9939-07-09176-9.
    [22] G. J. Minty, Monotone (nonlinear) operators in Hilbert space, Duke Math. J., 29 (1962), 341-346.  doi: 10.1215/S0012-7094-62-02933-2.
    [23] B. Nayroles, Deux théorèmes de minimum pour certains systèmes dissipatifs, C. R. Acad. Sci. Paris Sér. A-B, (1976), 282. 
    [24] J. -P. Penot, A representation of maximal monotone operators by closed convex functions and its impact on calculus rules, C. R. Math. Acad. Sci. Paris, Ser. I, 338 (2004), 853-858.  doi: 10.1016/j.crma.2004.03.017.
    [25] J. -P. Penot, The relevance of convex analysis for the study of monotonicity, Nonlinear Anal., 58 (2004), 855-871.  doi: 10.1016/j.na.2004.05.018.
    [26] H. Rios, Étude de la question d'existence pour certains problèmes d'évolution par minimisa-tion d'une fonctionnelle convexe, C. R. Acad. Sci. Paris Sér. A-B, 283 (1976), A83-A86. 
    [27] T. RocheR. Rossi and U. Stefanelli, Stability results for doubly nonlinear differential inclusions by variational convergence, SIAM J. Control Optim., 52 (2014), 1071-1107.  doi: 10.1137/130909391.
    [28] R. T. RockafellarConvex Analysis, Princeton University Press, Princeton, 1969. 
    [29] T. Roubíček, Direct method for parabolic problems, Adv. Math. Sci. Appl., 10 (2000), 57-65. 
    [30] B. F. Svaiter, Fixed points in the family of convex representations of a maximal monotone operator, Proc. Amer. Math. Soc., 131 (2003), 3851-3859.  doi: 10.1090/S0002-9939-03-07083-7.
    [31] A. Visintin, Extension of the Brezis-Ekeland-Nayroles principle to monotone operators, Adv. Math. Sci. Appl., 18 (2008), 633-650. 
    [32] A. Visintin, Variational formulation and structural stability of monotone equations, Calc. Var. Partial Differential Equations, 47 (2013), 273-317.  doi: 10.1007/s00526-012-0519-y.
    [33] A. Visintin, An extension of the Fitzpatrick theory, Commun. Pure Appl. Anal., 13 (2014), 2039-2058.  doi: 10.3934/cpaa.2014.13.2039.
    [34] A. Visintin, On Fitzpatrick's theory and stability of flows, Rend. Lincei Mat. Appl., 27 (2016), 151-180.  doi: 10.4171/RLM/729.
    [35] A. Visintin, Structural compactness and stability of pseudo-monotone flows, forthcoming.
  • 加载中
SHARE

Article Metrics

HTML views(279) PDF downloads(325) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return