Let $V$ be a Banach space, $z'\in V'$, and $\alpha: V\to {\mathcal P}(V')$ be a maximal monotone operator. A large number of phenomena can be modelled by inclusions of the form $\alpha(u) \ni z'$, or by the associated flow $D_tu + \alpha(u) \ni z'$. Fitzpatrick proved that there exists a lower semicontinuous, convex representative function$f_\alpha: V \!\times\! V'\to \mathbb{R}\cup \{+\infty\}$ such that
$f_\alpha(v,v') \ge \langle v',v\rangle\quad\;\forall (v,v'), \qquad\quadf_\alpha(v,v') = \langle v',v\rangle\;\;\Leftrightarrow\;\;\; v'\in \alpha(v).$
This provides a variational formulation for the above inclusions. Here we use this approach to prove two results of existence of a solution, without using the classical theory of maximal monotone operators. This is based on a minimax theorem, and on the duality theory of convex optimization.
Citation: |
[1] |
G. Auchmuty, Saddle-points and existence-uniqueness for evolution equations, Differential Integral Equations, 6 (1993), 1161-1170.
![]() |
[2] |
C. Baiocchi and A. Capelo, Variational and Quasivariational Inequalities, Applications to Free Boundary Problems, Wiley and Sons, Chichester, 1984.
![]() |
[3] |
V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Noordhoff, Leyden, 1976.
doi: 10.1007/978-94-010-1537-0.![]() ![]() |
[4] |
H. H. Bauschke and X. Wang, The kernel average for two convex functions and its applications to the extension and representation of monotone operators, Trans. Amer. Math. Soc., 361 (2009), 5947-5965.
doi: 10.1090/S0002-9947-09-04698-4.![]() ![]() |
[5] |
H. Brezis, Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert, North-Holland, Amsterdam, 1973.
![]() |
[6] |
H. Brezis and I. Ekeland, Un principe variationnel associé à certaines équations paraboliques. Ⅰ. Le cas indépendant du temps and Ⅱ. Le cas dépendant du temps, C. R. Acad. Sci. Paris Sér. A-B, 282 (1976), 971–974, and ibid. 1197–1198.
![]() |
[7] |
F. Browder, Nonlinear Operators and Nonlinear Equations of Evolution in Banach Spaces, Proc. Sympos. Pure Math. , Volume ⅩⅧ, Part Ⅱ, A. M. S. , Providence 1976.
doi: 10.1090/S0002-9904-1967-11820-2.![]() ![]() |
[8] |
M. Buliga, G. de Saxcé and C. Vallée, Existence and construction of bipotentials for graphs of multivalued laws, J. Convex Anal., 15 (2008), 87-104.
![]() |
[9] |
R. S. Burachik and B. F. Svaiter, Maximal monotone operators, convex functions, and a special family of enlargements, Set-Valued Analysis, 10 (2002), 297-316.
![]() |
[10] |
R. S. Burachik and B. F. Svaiter, Maximal monotonicity, conjugation and the duality product, Proc. Amer. Math. Soc., 131 (2003), 2379-2383.
![]() |
[11] |
I. Ekeland and R. Temam, Analyse Convexe et Problèmes Variationnelles, Dunod GauthierVillars, Paris, 1974.
![]() |
[12] |
K. Fan, A minimax inequality and applications, Inequalities Ⅲ, Proc. Third Sympos. , Univ. California, Los Angeles 1969, pp. 103-113, Academic Press, New York 1972.
![]() |
[13] |
W. Fenchel, Convex Cones, Sets, and Functions, Princeton Univ. , 1953.
![]() |
[14] |
S. Fitzpatrick, Representing monotone operators by convex functions, Workshop/Miniconference on Functional Analysis and Optimization, Canberra, 1988, Proc. Centre Math. Anal. Austral. Nat. Univ., 20 (1988), 59-65.
![]() |
[15] |
N. Ghoussoub, Selfdual Partial Differential Systems and their Variational Principles, Springer, 2008.
![]() |
[16] |
N. Ghoussoub, A variational theory for monotone vector fields, J. Fixed Point Theory Appl., 4 (2008), 107-135.
doi: 10.1007/s11784-008-0083-4.![]() ![]() |
[17] |
N. Ghoussoub and L. Tzou, A variational principle for gradient flows, Math. Ann., 330 (2004), 519-549.
doi: 10.1007/s00208-004-0558-6.![]() ![]() |
[18] |
J. L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires, Dunod, Paris, 1969.
![]() |
[19] |
J. -E. Martinez-Legaz and M. Théra, A convex representation of maximal monotone operators, J. Nonlinear Convex Anal., 2 (2001), 243-247.
![]() |
[20] |
J. -E. Martinez-Legaz and B. F. Svaiter, Monotone operators representable by l.s.c. convex functions, Set-Valued Anal., 13 (2005), 21-46.
doi: 10.1007/s11228-004-4170-4.![]() ![]() |
[21] |
J. -E. Martinez-Legaz and B. F. Svaiter, Minimal convex functions bounded below by the duality product, Proc. Amer. Math. Soc., 136 (2008), 873-878.
doi: 10.1090/S0002-9939-07-09176-9.![]() ![]() |
[22] |
G. J. Minty, Monotone (nonlinear) operators in Hilbert space, Duke Math. J., 29 (1962), 341-346.
doi: 10.1215/S0012-7094-62-02933-2.![]() ![]() |
[23] |
B. Nayroles, Deux théorèmes de minimum pour certains systèmes dissipatifs, C. R. Acad. Sci. Paris Sér. A-B, (1976), 282.
![]() |
[24] |
J. -P. Penot, A representation of maximal monotone operators by closed convex functions and its impact on calculus rules, C. R. Math. Acad. Sci. Paris, Ser. I, 338 (2004), 853-858.
doi: 10.1016/j.crma.2004.03.017.![]() ![]() |
[25] |
J. -P. Penot, The relevance of convex analysis for the study of monotonicity, Nonlinear Anal., 58 (2004), 855-871.
doi: 10.1016/j.na.2004.05.018.![]() ![]() |
[26] |
H. Rios, Étude de la question d'existence pour certains problèmes d'évolution par minimisa-tion d'une fonctionnelle convexe, C. R. Acad. Sci. Paris Sér. A-B, 283 (1976), A83-A86.
![]() |
[27] |
T. Roche, R. Rossi and U. Stefanelli, Stability results for doubly nonlinear differential inclusions by variational convergence, SIAM J. Control Optim., 52 (2014), 1071-1107.
doi: 10.1137/130909391.![]() ![]() |
[28] |
R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, 1969.
![]() |
[29] |
T. Roubíček, Direct method for parabolic problems, Adv. Math. Sci. Appl., 10 (2000), 57-65.
![]() |
[30] |
B. F. Svaiter, Fixed points in the family of convex representations of a maximal monotone operator, Proc. Amer. Math. Soc., 131 (2003), 3851-3859.
doi: 10.1090/S0002-9939-03-07083-7.![]() ![]() |
[31] |
A. Visintin, Extension of the Brezis-Ekeland-Nayroles principle to monotone operators, Adv. Math. Sci. Appl., 18 (2008), 633-650.
![]() |
[32] |
A. Visintin, Variational formulation and structural stability of monotone equations, Calc. Var. Partial Differential Equations, 47 (2013), 273-317.
doi: 10.1007/s00526-012-0519-y.![]() ![]() |
[33] |
A. Visintin, An extension of the Fitzpatrick theory, Commun. Pure Appl. Anal., 13 (2014), 2039-2058.
doi: 10.3934/cpaa.2014.13.2039.![]() ![]() |
[34] |
A. Visintin, On Fitzpatrick's theory and stability of flows, Rend. Lincei Mat. Appl., 27 (2016), 151-180.
doi: 10.4171/RLM/729.![]() ![]() |
[35] |
A. Visintin, Structural compactness and stability of pseudo-monotone flows, forthcoming.
![]() |