In this paper, we study the existence of periodic solutions for perturbed dynamic equations on time scales. Our approach is based on the averaging method. Further, we extend some averaging theorem to periodic solutions of dynamic equations on time scales to $k-$th order in $\varepsilon$. More precisely, results of higher order averaging for finding periodic solutions are given via the topological degree theory.
Citation: |
M. Adivar
and Y. N. Raffoul
, Existence results for periodic solutions of intego-dynamic equations on time scales, Ann. Mat. Pura. Appl., 188 (2009)
, 543-559.
doi: 10.1007/s10231-008-0088-z.![]() ![]() ![]() |
|
N. N. Bogoliubov,
On some Statistical Methods in Mathematical Physics Lzv. Akad. Nauk Ukr. SSR, Kiev, 1945.
![]() ![]() |
|
N. N. Bogoliubov and N. Krylov,
The Application of Methods of Nonlinear Mechanics in the Theory of Stationary Oscillations, Ukrainian Acad. Sci. , Kiev, 1934.
![]() |
|
M. Bohner and A. Peterson,
Dynamic Equations on Time Scales, An Introduction with Applications Birkh$ä$user, Boston, 2001.
doi: 10.1007/978-1-4612-0201-1.![]() ![]() ![]() |
|
M. Bohner and A. Peterson,
Advances in Dynamic Equations on Time Scales, Birkh$ä$user, Boston, 2003.
![]() |
|
M. Bohner
and G. Sh. Guseinov
, Partial differentiation on time scales, Dynam. Syst. and Appl., 13 (2004)
, 351-379.
![]() ![]() |
|
A. Buica
and J. Llibre
, Averaging methods for finding periodic orbits via Brouwer degree, Bull. Sci. Math., 128 (2004)
, 7-22.
doi: 10.1016/j.bulsci.2003.09.002.![]() ![]() ![]() |
|
P. Fatou
, Sur le movement d'un systáme soumis á Des forces á courte période, Bull. Soc.
Math. Fance., 56 (1928)
, 98-139.
![]() ![]() |
|
S. Hilger,
Ein Ma$β$kettenkalk$ü$ mit Anwendung auf Zentrumsmanningfaltigkeiten PhD thesis, Universit$ä$t W$ü$rzburg, 1988.
![]() |
|
Y. Li and C. Wang, Almost periodic functions on time scales and applications Discrete Dyn. Nat. Soc., 2011 (2011), Art. ID 727068, 20 pp.
doi: 10.1155/2011/727068.![]() ![]() ![]() |
|
C. Lizama
and J. G. Mesquita
, Almost automorphic solutions of dynamic equations on time scales, J. Funct. Anal., 265 (2013)
, 2267-2311.
doi: 10.1016/j.jfa.2013.06.013.![]() ![]() ![]() |
|
J. Llibre
, D. D Novaes
and M. A Teixeira
, Higher order averaging theory for finding periodic solutions via Brouwer degree, Nonlinearly, 27 (2014)
, 563-583.
doi: 10.1088/0951-7715/27/3/563.![]() ![]() ![]() |
|
J. Llibre
, D. D. Novaes
and M. A. Teixeira
, On the birth of limit cycles for non-smooth dynamical systems, Bull. Sci. Math., 139 (2015)
, 229-244.
doi: 10.1016/j.bulsci.2014.08.011.![]() ![]() ![]() |
|
A. Slavík
, Averaging dynamic equations on time scales, J. Math. Anal. Appl., 388 (2012)
, 996-1012.
doi: 10.1016/j.jmaa.2011.10.043.![]() ![]() ![]() |
|
C. Wang
and Y. Li
, Affine-periodic solutions for nonlinear differential equations on time scales, Adv. Differ. Equ., 2015 (2015)
, 286-302.
doi: 10.1186/s13662-015-0634-0.![]() ![]() ![]() |