We show that if the Lyapunov exponents associated to a linear equation $x'=A(t)x$ are equal to the given limits, then this asymptotic behavior can be reproduced by the solutions of the nonlinear equation $x'=A(t)x+f(t, x)$ for any sufficiently small perturbation $f$. We consider the linear equation with a very general nonuniform behavior which has different growth rates.
Citation: |
L. Barreira , J. Chu and C. Valls , Robustness of nonuniform dichotomies with different growth rates, São Paulo J. Math. Sci., 5 (2011) , 203-231. doi: 10.11606/issn.2316-9028.v5i2p203-231. | |
L. Barreira, D. Dragičevič and C. Valls, Tempered exponential dichotomies and Lyapunov exponents for perturbations, Commun. Contemp. Math., 18 (2016), 1550058, 16 pp. doi: 10.1142/S0219199715500583. | |
L. Barreira and Ya. Pesin, Lyapunov Exponents and Smooth Ergodic Theory, University Lecture Series, 23 American Mathematical Society, Providence, RI, 2002. doi: 10.1090/ulect/023. | |
L. Barreira and C. Valls, Stability of Nonautonomous Differential Equations, Lecture Notes in Mathematics, 1926 Springer, Berlin, 2008. doi: 10.1007/978-3-540-74775-8. | |
L. Barreira and C. Valls , Nonautonomous equations with arbitrary growth rates: A Perron-type theorem, Nonlinear Anal., 75 (2012) , 6203-6215. doi: 10.1016/j.na.2012.06.027. | |
L. Barreira and C. Valls , A Perron-type theorem for nonautonomous difference equations, Nonlinearity, 26 (2013) , 855-870. doi: 10.1088/0951-7715/26/3/855. | |
L. Barreira and C. Valls , A Perron-type theorem for nonautonomous differential equations, J. Differential Equations, 258 (2015) , 339-361. doi: 10.1016/j.jde.2014.09.012. | |
A. J. G. Bento and C. Silva , Nonuniform $(μ,ν)$ -dichotomies and local dynamics of difference equations, Nonlinear Anal., 75 (2012) , 78-90. doi: 10.1016/j.na.2011.08.008. | |
J. Chu , Robustness of nonuniform behavior for discrete dynamics, Bull. Sci. Math., 137 (2013) , 1031-1047. doi: 10.1016/j.bulsci.2013.03.003. | |
C. Coffman , Asymptotic behavior of solutions of ordinary difference equations, Trans. Amer. Math. Soc., 110 (1964) , 22-51. doi: 10.1090/S0002-9947-1964-0156122-9. | |
W. Coppel, Stability and Asymptotic Behavior of Differential Equations, D. C. Heath and Co., Boston, Mass, 1965. | |
P. Hartman and A. Wintner , Asymptotic integrations of linear differential equations, Amer. J. Math., 77 (1955) , 45-86. doi: 10.2307/2372422. | |
Y. X. Jiang and F. F. Liao, Admissibility for nonuniform $(μ, ν)$ contraction and dichotomy, Abstr. Appl. Anal., 2012 (2012), Article ID 741696, 23pp. doi: 10.1155/2012/741696. | |
F. Lettenmeyer, Üer das asymptotische Verhalten der Lösungen von Differentialgleichungen und Differentialgleichungssystemen, Verlag d. Bayr. Akad. d. Wiss, 1929. | |
K. Matsui , H. Matsunaga and S. Murakami , Perron type theorem for functional differential equations with infinite delay in a Banach space, Nonlinear Anal., 69 (2008) , 3821-3837. doi: 10.1016/j.na.2007.10.017. | |
O. Perron , Üer Stabilität und asymptotisches Verhalten der Integrale von Differentialgleichungssystemen, Math. Z., 29 (1929) , 129-160. doi: 10.1007/BF01180524. | |
M. Pituk , A Perron type theorem for functional differential equations, J. Math. Anal. Appl., 316 (2006) , 24-41. doi: 10.1016/j.jmaa.2005.04.027. | |
M. Pituk , Asymptotic behavior and oscillation of functional differential equations, J. Math. Anal. Appl., 322 (2006) , 1140-1158. doi: 10.1016/j.jmaa.2005.09.081. | |
H. L. Zhu , C. Zhang and Y. X. Jiang , A Perron-type theorem for nonautonomous difference equations with nonuniform behavior, Electron. J. Qual. Theory Differ. Equ, 36 (2015) , 1-15. doi: 10.14232/ejqtde.2015.1.36. |