-
Previous Article
Steady states of a Sel'kov-Schnakenberg reaction-diffusion system
- DCDS-S Home
- This Issue
-
Next Article
Global Hopf bifurcation of a population model with stage structure and strong Allee effect
A Perron-type theorem for nonautonomous differential equations with different growth rates
1. | Department of Mathematics, College of Science, Hohai University, Nanjing, Jiangsu 210098, China |
2. | School of Mathematical and Statistical Sciences, University of Texas-Rio Grande valley, Edinburg, Texas 78539, USA |
We show that if the Lyapunov exponents associated to a linear equation $x'=A(t)x$ are equal to the given limits, then this asymptotic behavior can be reproduced by the solutions of the nonlinear equation $x'=A(t)x+f(t, x)$ for any sufficiently small perturbation $f$. We consider the linear equation with a very general nonuniform behavior which has different growth rates.
References:
[1] |
L. Barreira, J. Chu and C. Valls,
Robustness of nonuniform dichotomies with different growth rates, São Paulo J. Math. Sci., 5 (2011), 203-231.
doi: 10.11606/issn.2316-9028.v5i2p203-231. |
[2] |
L. Barreira, D. Dragičevič and C. Valls, Tempered exponential dichotomies and Lyapunov exponents for perturbations, Commun. Contemp. Math., 18 (2016), 1550058, 16 pp.
doi: 10.1142/S0219199715500583. |
[3] |
L. Barreira and Ya. Pesin,
Lyapunov Exponents and Smooth Ergodic Theory, University Lecture Series, 23 American Mathematical Society, Providence, RI, 2002.
doi: 10.1090/ulect/023. |
[4] |
L. Barreira and C. Valls,
Stability of Nonautonomous Differential Equations, Lecture Notes in Mathematics, 1926 Springer, Berlin, 2008.
doi: 10.1007/978-3-540-74775-8. |
[5] |
L. Barreira and C. Valls,
Nonautonomous equations with arbitrary growth rates: A Perron-type theorem, Nonlinear Anal., 75 (2012), 6203-6215.
doi: 10.1016/j.na.2012.06.027. |
[6] |
L. Barreira and C. Valls,
A Perron-type theorem for nonautonomous difference equations, Nonlinearity, 26 (2013), 855-870.
doi: 10.1088/0951-7715/26/3/855. |
[7] |
L. Barreira and C. Valls,
A Perron-type theorem for nonautonomous differential equations, J. Differential Equations, 258 (2015), 339-361.
doi: 10.1016/j.jde.2014.09.012. |
[8] |
A. J. G. Bento and C. Silva,
Nonuniform $(μ,ν)$
-dichotomies and local dynamics of difference equations, Nonlinear Anal., 75 (2012), 78-90.
doi: 10.1016/j.na.2011.08.008. |
[9] |
J. Chu,
Robustness of nonuniform behavior for discrete dynamics, Bull. Sci. Math., 137 (2013), 1031-1047.
doi: 10.1016/j.bulsci.2013.03.003. |
[10] |
C. Coffman,
Asymptotic behavior of solutions of ordinary difference equations, Trans. Amer. Math. Soc., 110 (1964), 22-51.
doi: 10.1090/S0002-9947-1964-0156122-9. |
[11] |
W. Coppel,
Stability and Asymptotic Behavior of Differential Equations, D. C. Heath and Co., Boston, Mass, 1965. |
[12] |
P. Hartman and A. Wintner,
Asymptotic integrations of linear differential equations, Amer. J. Math., 77 (1955), 45-86.
doi: 10.2307/2372422. |
[13] |
Y. X. Jiang and F. F. Liao, Admissibility for nonuniform $(μ, ν)$ contraction and dichotomy, Abstr. Appl. Anal., 2012 (2012), Article ID 741696, 23pp.
doi: 10.1155/2012/741696. |
[14] |
F. Lettenmeyer,
Üer das asymptotische Verhalten der Lösungen von Differentialgleichungen und Differentialgleichungssystemen, Verlag d. Bayr. Akad. d. Wiss, 1929. |
[15] |
K. Matsui, H. Matsunaga and S. Murakami,
Perron type theorem for functional differential equations with infinite delay in a Banach space, Nonlinear Anal., 69 (2008), 3821-3837.
doi: 10.1016/j.na.2007.10.017. |
[16] |
O. Perron,
Üer Stabilität und asymptotisches Verhalten der Integrale von Differentialgleichungssystemen, Math. Z., 29 (1929), 129-160.
doi: 10.1007/BF01180524. |
[17] |
M. Pituk,
A Perron type theorem for functional differential equations, J. Math. Anal. Appl., 316 (2006), 24-41.
doi: 10.1016/j.jmaa.2005.04.027. |
[18] |
M. Pituk,
Asymptotic behavior and oscillation of functional differential equations, J. Math. Anal. Appl., 322 (2006), 1140-1158.
doi: 10.1016/j.jmaa.2005.09.081. |
[19] |
H. L. Zhu, C. Zhang and Y. X. Jiang,
A Perron-type theorem for nonautonomous difference equations with nonuniform behavior, Electron. J. Qual. Theory Differ. Equ, 36 (2015), 1-15.
doi: 10.14232/ejqtde.2015.1.36. |
show all references
References:
[1] |
L. Barreira, J. Chu and C. Valls,
Robustness of nonuniform dichotomies with different growth rates, São Paulo J. Math. Sci., 5 (2011), 203-231.
doi: 10.11606/issn.2316-9028.v5i2p203-231. |
[2] |
L. Barreira, D. Dragičevič and C. Valls, Tempered exponential dichotomies and Lyapunov exponents for perturbations, Commun. Contemp. Math., 18 (2016), 1550058, 16 pp.
doi: 10.1142/S0219199715500583. |
[3] |
L. Barreira and Ya. Pesin,
Lyapunov Exponents and Smooth Ergodic Theory, University Lecture Series, 23 American Mathematical Society, Providence, RI, 2002.
doi: 10.1090/ulect/023. |
[4] |
L. Barreira and C. Valls,
Stability of Nonautonomous Differential Equations, Lecture Notes in Mathematics, 1926 Springer, Berlin, 2008.
doi: 10.1007/978-3-540-74775-8. |
[5] |
L. Barreira and C. Valls,
Nonautonomous equations with arbitrary growth rates: A Perron-type theorem, Nonlinear Anal., 75 (2012), 6203-6215.
doi: 10.1016/j.na.2012.06.027. |
[6] |
L. Barreira and C. Valls,
A Perron-type theorem for nonautonomous difference equations, Nonlinearity, 26 (2013), 855-870.
doi: 10.1088/0951-7715/26/3/855. |
[7] |
L. Barreira and C. Valls,
A Perron-type theorem for nonautonomous differential equations, J. Differential Equations, 258 (2015), 339-361.
doi: 10.1016/j.jde.2014.09.012. |
[8] |
A. J. G. Bento and C. Silva,
Nonuniform $(μ,ν)$
-dichotomies and local dynamics of difference equations, Nonlinear Anal., 75 (2012), 78-90.
doi: 10.1016/j.na.2011.08.008. |
[9] |
J. Chu,
Robustness of nonuniform behavior for discrete dynamics, Bull. Sci. Math., 137 (2013), 1031-1047.
doi: 10.1016/j.bulsci.2013.03.003. |
[10] |
C. Coffman,
Asymptotic behavior of solutions of ordinary difference equations, Trans. Amer. Math. Soc., 110 (1964), 22-51.
doi: 10.1090/S0002-9947-1964-0156122-9. |
[11] |
W. Coppel,
Stability and Asymptotic Behavior of Differential Equations, D. C. Heath and Co., Boston, Mass, 1965. |
[12] |
P. Hartman and A. Wintner,
Asymptotic integrations of linear differential equations, Amer. J. Math., 77 (1955), 45-86.
doi: 10.2307/2372422. |
[13] |
Y. X. Jiang and F. F. Liao, Admissibility for nonuniform $(μ, ν)$ contraction and dichotomy, Abstr. Appl. Anal., 2012 (2012), Article ID 741696, 23pp.
doi: 10.1155/2012/741696. |
[14] |
F. Lettenmeyer,
Üer das asymptotische Verhalten der Lösungen von Differentialgleichungen und Differentialgleichungssystemen, Verlag d. Bayr. Akad. d. Wiss, 1929. |
[15] |
K. Matsui, H. Matsunaga and S. Murakami,
Perron type theorem for functional differential equations with infinite delay in a Banach space, Nonlinear Anal., 69 (2008), 3821-3837.
doi: 10.1016/j.na.2007.10.017. |
[16] |
O. Perron,
Üer Stabilität und asymptotisches Verhalten der Integrale von Differentialgleichungssystemen, Math. Z., 29 (1929), 129-160.
doi: 10.1007/BF01180524. |
[17] |
M. Pituk,
A Perron type theorem for functional differential equations, J. Math. Anal. Appl., 316 (2006), 24-41.
doi: 10.1016/j.jmaa.2005.04.027. |
[18] |
M. Pituk,
Asymptotic behavior and oscillation of functional differential equations, J. Math. Anal. Appl., 322 (2006), 1140-1158.
doi: 10.1016/j.jmaa.2005.09.081. |
[19] |
H. L. Zhu, C. Zhang and Y. X. Jiang,
A Perron-type theorem for nonautonomous difference equations with nonuniform behavior, Electron. J. Qual. Theory Differ. Equ, 36 (2015), 1-15.
doi: 10.14232/ejqtde.2015.1.36. |
[1] |
Luis Barreira, Claudia Valls. Stability of nonautonomous equations and Lyapunov functions. Discrete and Continuous Dynamical Systems, 2013, 33 (7) : 2631-2650. doi: 10.3934/dcds.2013.33.2631 |
[2] |
Lars Grüne, Peter E. Kloeden, Stefan Siegmund, Fabian R. Wirth. Lyapunov's second method for nonautonomous differential equations. Discrete and Continuous Dynamical Systems, 2007, 18 (2&3) : 375-403. doi: 10.3934/dcds.2007.18.375 |
[3] |
N. D. Cong, T. S. Doan, S. Siegmund. A Bohl-Perron type theorem for random dynamical systems. Conference Publications, 2011, 2011 (Special) : 322-331. doi: 10.3934/proc.2011.2011.322 |
[4] |
Hildebrando M. Rodrigues, J. Solà-Morales, G. K. Nakassima. Stability problems in nonautonomous linear differential equations in infinite dimensions. Communications on Pure and Applied Analysis, 2020, 19 (6) : 3189-3207. doi: 10.3934/cpaa.2020138 |
[5] |
Ismael Maroto, Carmen Núñez, Rafael Obaya. Exponential stability for nonautonomous functional differential equations with state-dependent delay. Discrete and Continuous Dynamical Systems - B, 2017, 22 (8) : 3167-3197. doi: 10.3934/dcdsb.2017169 |
[6] |
Nguyen Thieu Huy, Ngo Quy Dang. Dichotomy and periodic solutions to partial functional differential equations. Discrete and Continuous Dynamical Systems - B, 2017, 22 (8) : 3127-3144. doi: 10.3934/dcdsb.2017167 |
[7] |
Xiaofei He, X. H. Tang. Lyapunov-type inequalities for even order differential equations. Communications on Pure and Applied Analysis, 2012, 11 (2) : 465-473. doi: 10.3934/cpaa.2012.11.465 |
[8] |
Yufeng Shi, Qingfeng Zhu. A Kneser-type theorem for backward doubly stochastic differential equations. Discrete and Continuous Dynamical Systems - B, 2010, 14 (4) : 1565-1579. doi: 10.3934/dcdsb.2010.14.1565 |
[9] |
Sigurdur Freyr Hafstein. A constructive converse Lyapunov theorem on exponential stability. Discrete and Continuous Dynamical Systems, 2004, 10 (3) : 657-678. doi: 10.3934/dcds.2004.10.657 |
[10] |
Wan-Tong Li, Bin-Guo Wang. Attractor minimal sets for nonautonomous type-K competitive and semi-convex delay differential equations with applications. Discrete and Continuous Dynamical Systems, 2009, 24 (2) : 589-611. doi: 10.3934/dcds.2009.24.589 |
[11] |
Ravi P. Agarwal, Abdullah Özbekler. Lyapunov type inequalities for $n$th order forced differential equations with mixed nonlinearities. Communications on Pure and Applied Analysis, 2016, 15 (6) : 2281-2300. doi: 10.3934/cpaa.2016037 |
[12] |
Volodymyr Pichkur. On practical stability of differential inclusions using Lyapunov functions. Discrete and Continuous Dynamical Systems - B, 2017, 22 (5) : 1977-1986. doi: 10.3934/dcdsb.2017116 |
[13] |
Fuke Wu, Shigeng Hu. The LaSalle-type theorem for neutral stochastic functional differential equations with infinite delay. Discrete and Continuous Dynamical Systems, 2012, 32 (3) : 1065-1094. doi: 10.3934/dcds.2012.32.1065 |
[14] |
Arno Berger. Counting uniformly attracting solutions of nonautonomous differential equations. Discrete and Continuous Dynamical Systems - S, 2008, 1 (1) : 15-25. doi: 10.3934/dcdss.2008.1.15 |
[15] |
Bernd Aulbach, Martin Rasmussen, Stefan Siegmund. Invariant manifolds as pullback attractors of nonautonomous differential equations. Discrete and Continuous Dynamical Systems, 2006, 15 (2) : 579-596. doi: 10.3934/dcds.2006.15.579 |
[16] |
Christian Pötzsche. Dichotomy spectra of triangular equations. Discrete and Continuous Dynamical Systems, 2016, 36 (1) : 423-450. doi: 10.3934/dcds.2016.36.423 |
[17] |
Christian Lax, Sebastian Walcher. A note on global asymptotic stability of nonautonomous master equations. Discrete and Continuous Dynamical Systems - B, 2013, 18 (8) : 2143-2149. doi: 10.3934/dcdsb.2013.18.2143 |
[18] |
Feng Wang, José Ángel Cid, Mirosława Zima. Lyapunov stability for regular equations and applications to the Liebau phenomenon. Discrete and Continuous Dynamical Systems, 2018, 38 (9) : 4657-4674. doi: 10.3934/dcds.2018204 |
[19] |
A. Rodríguez-Bernal. Perturbation of the exponential type of linear nonautonomous parabolic equations and applications to nonlinear equations. Discrete and Continuous Dynamical Systems, 2009, 25 (3) : 1003-1032. doi: 10.3934/dcds.2009.25.1003 |
[20] |
Zhenjie Li, Ze Cheng, Dongsheng Li. The Liouville type theorem and local regularity results for nonlinear differential and integral systems. Communications on Pure and Applied Analysis, 2015, 14 (2) : 565-576. doi: 10.3934/cpaa.2015.14.565 |
2020 Impact Factor: 2.425
Tools
Metrics
Other articles
by authors
[Back to Top]