\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Pattern dynamics of a delayed eco-epidemiological model with disease in the predator

  • * Corresponding author: Zhen Jin

    * Corresponding author: Zhen Jin 

The work is supported by the National Natural Science Foundation of China under Grants (11331009,11671241 and 11301490), 131 Talents of Shanxi University, Program for the Outstanding Innovative Teams (OIT) of Higher Learning Institutions of Shanxi, and Natural Science Foundation of Shanxi Province Grant no. 201601D021002

Abstract / Introduction Full Text(HTML) Figure(7) Related Papers Cited by
  • The eco-epidemiology, combining interacting species with epidemiology, can describe some complex phenomena in real ecosystem. Most diseases contain the latent stage in the process of disease transmission. In this paper, a spatial eco-epidemiological model with delay and disease in the predator is studied. By mathematical analysis, the characteristic equations are derived, then we give the conditions of diffusion-driven equilibrium instability and delay-driven equilibrium instability, and find the ranges of existence of Turing patterns in parameter space. Moreover, numerical results indicate that a parameter variation has influences on time and spatially averaged densities of pattern reaching stationary states when other parameters are fixed. The obtained results may explain some mechanisms of phenomena existing in real ecosystem.

    Mathematics Subject Classification: Primary: 35K57, 35B36; Secondary: 92D25, 92D30.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Schematic diagrams of the cubic function $y(e)$ for $y_{1}>0$ in Theorem 3.3. (a) $y_{3}x y0$. (b) $y_{3}=0$ and $y_{2} < 0$. (c) $y_{3}>0$, $y_{2}^{2}-3y_{1}y_{3}>0$ and $y_{2} < 0$

    Figure 2.  The bifurcation diagram of system (4) in parameter space $r-h$. (a) Parameters are $\beta_{1}=1.8$, $\mu=0.6$, $m=0.8$, $D_{1}=1$, $D_{2}=0.03$, $D_{3}=2$, $\tau=0.01$. (b) Parameters are $\beta_{1}=1.8$, $\mu=0.6$, $m=0.7$, $D_{1}=10$, $D_{2}=0.1$, $D_{3}=4$, $\tau=0.01$

    Figure 3.  Coefficients of the dispersion relation of the characteristic equation (16) for $r=0.1$, $h=0.07$, $\beta_{1}=1.8$, $\mu=0.6$, $m=0.8$, $D_{1}=1$, $D_{2}=0.03$, $D_{3}=2$, $\tau=0.01$

    Figure 4.  Coefficients of the dispersion relation of the characteristic equation (16) for $r=0.1$, $h=0.1$, $\beta_{1}=1.8$, $\mu=0.6$, $m=0.7$, $D_{1}=10$, $D_{2}=0.1$, $D_{3}=4$, $\tau=0.01$

    Figure 5.  Schematic diagrams of the cubic function $y(e)$ for $y_{1}>0$ in Theorem 3.4. (a) $y_{2}^{2}-3y_{1}y_{3}\leq 0$. (b) $y_{3}>0$, $y_{2}^{2}-3y_{1}y_{3}>0$ and $y_{2}>0$. (c) $y_{3}=0$ and $y_{2}>0$. (d) $y_{3} < 0$. (e) $y_{3}=0$ and $y_{2} < 0$. (f) $y_{3}>0$, $y_{2}^{2}-3y_{1}y_{3}>0$ and $y_{2} < 0$

    Figure 6.  Spatial patterns (top) and the corresponding spatially averaged population density (bottom). (a) Small "black-eye" pattern (r=0.1), (b) small "black-eye" pattern (r=0.15)

    Figure 7.  Spatial patterns (top) and the corresponding spatially averaged population density (bottom). (a) Big "black-eye" pattern (h=0.1), (b) big "black-eye" pattern (h=0.14)

  •   A. Abdelrazec , J. Bélair  and  C. Shan , Modeling the spread and control of dengue with limited public health resources, Mathematical Biosciences, 271 (2016) , 136-145.  doi: 10.1016/j.mbs.2015.11.004.
      R. M. Anderson, R. M. May and B. Anderson, Infectious Diseases of Humans: Dynamics and Control, Oxford university press, Oxford, 1992.
      J. L. Aragon , C. Varea  and  R. A. Barrio , Spatial patterning in modified Turing systems: Application to pigmentation patterns on marine fish, Forma, 13 (1998) , 213-221. 
      N. T. J. Bailey, The Mathematical Theory of Infectious Diseases and Its Applications, Charles Griffin and Company Ltd, Bucks, 1975.
      R. A. Barrio , C. Varea  and  J. L. Aragón , A two-dimensional numerical study of spatial pattern formation in interacting Turing systems, Bulletin of mathematical biology, 61 (1999) , 483-505.  doi: 10.1006/bulm.1998.0093.
      A. M. Bate  and  F. M. Hilker , Predator-prey oscillations can shift when diseases become endemic, Journal of Theoretical Biology, 316 (2013) , 1-8.  doi: 10.1016/j.jtbi.2012.09.013.
      A. D. Bazykin, Nonlinear Dynamics of Interacting Populations, World Scientific, Singapore, 1998. doi: 10.1142/9789812798725.
      C. Bowman , A. B. Gumel  and  P. Van den Driessche , A mathematical model for assessing control strategies against West Nile virus, Bulletin of Mathematical Biology, 67 (2005) , 1107-1133.  doi: 10.1016/j.bulm.2005.01.002.
      L. W. Buss , Competitive intransitivity and size-frequency distributions of interacting populations, Proceedings of the National Academy of Sciences, 77 (1980) , 5355-5359.  doi: 10.1073/pnas.77.9.5355.
      J. Chattopadhyay  and  O. Arino , A predator-prey model with disease in the prey, Nonlinear Analysis: Theory, Methods and Applications, 36 (1999) , 747-766.  doi: 10.1016/S0362-546X(98)00126-6.
      P. J. Cunningham  and  W. J. Cunningham , Time lag in prey-predator population models, Ecology, 38 (1957) , 136-139.  doi: 10.2307/1932137.
      H. I. Freedman  and  P. Waltman , Persistence in models of three interacting predator-prey populations, Mathematical Biosciences, 68 (1984) , 213-231.  doi: 10.1016/0025-5564(84)90032-4.
      N. S. Goel , S. C. Maitra  and  E. W. Montroll , On the Volterra and other nonlinear models of interacting populations, Reviews of Modern Physics, 43 (1971) , 231-276.  doi: 10.1103/RevModPhys.43.231.
      K. P. Hadeler  and  H. I. Freedman , Predator-prey populations with parasitic infection, Journal of Mathematical Biology, 27 (1989) , 609-631.  doi: 10.1007/BF00276947.
      M. Haque , A predator-prey model with disease in the predator species only, Nonlinear Analysis: Real World Applications, 11 (2010) , 2224-2236.  doi: 10.1016/j.nonrwa.2009.06.012.
      H. W. Hethcote, A thousand and one epidemic models, in: S. A. Levin, Frontiers in mathematical biology, Leture Notes in Biomathematics, Springer Berlin Heidelberg, Berlin, (1994), 504-515. doi: 10.1007/978-3-642-50124-1_29.
      H. W. Hethcote , W. Wang  and  L. Han , A predator-prey model with infected prey, Theoretical Population Biology, 66 (2004) , 259-268.  doi: 10.1016/j.tpb.2004.06.010.
      F. M. Hilker  and  K. Schmitz , Disease-induced stabilization of predator-prey oscillations, Journal of Theoretical Biology, 255 (2008) , 299-306.  doi: 10.1016/j.jtbi.2008.08.018.
      Y. H. Hsieh  and  C. K. Hsiao , Predator-prey model with disease infection in both populations, Mathematical Medicine and Biology, 25 (2008) , 247-266.  doi: 10.1093/imammb/dqn017.
      K. O. Kermack  and  A. G. McKendrick , A contribution to the mathematical theory of epidemics, Proceedings of the Royal Society of London A, 115 (1927) , 700-721.  doi: 10.1098/rspa.1927.0118.
      C. A. Klausmeier , Regular and irregular patterns in semiarid vegetation, Science, 284 (1999) , 1826-1828.  doi: 10.1126/science.284.5421.1826.
      W. Ko  and  K. Ryu , Qualitative analysis of a predator-prey model with Holling type Ⅱ functional response incorporating a prey refuge, Journal of Differential Equations, 231 (2006) , 534-550.  doi: 10.1016/j.jde.2006.08.001.
      Y. Kuang  and  E. Beretta , Global qualitative analysis of a ratio-dependent predator-prey system, Journal of Mathematical Biology, 36 (1998) , 389-406.  doi: 10.1007/s002850050105.
      X. Li , G. Hu  and  Z. Feng , A periodic and diffusive predator-prey model with disease in the prey, Discrete and Continuous Dynamical Systems-Series S, 10 (2017) , 445-461.  doi: 10.3934/dcdss.2017021.
      L. Li , Z. Jin  and  J. Li , Periodic solutions in a herbivore-plant system with time delay and spatial diffusion, Applied Mathematical Modelling, 40 (2016) , 4765-4777.  doi: 10.1016/j.apm.2015.12.003.
      X. Lian, H. Wang and W. Wang, Delay-driven pattern formation in a reaction-diffusion predator-prey model incorporating a prey refuge, J. Stat. Mech. , 4 (2013), P04006, 16 pp. doi: 10.1088/1742-5468/2013/04/P04006.
      Q. X. Liu , P. M. J. Herman  and  W. M. Mooij , Pattern formation at multiple spatial scales drives the resilience of mussel bed ecosystems, Nature communications, 5 (2014) , 1-7.  doi: 10.1038/ncomms6234.
      R. T. Liu , S. S. Liaw  and  P. K. Maini , Two-stage Turing model for generating pigment patterns on the leopard and the jaguar, Physical Review E, 74 (2006) , 011914(1-8).  doi: 10.1103/PhysRevE.74.011914.
      A. Martin  and  S. Ruan , Predator-prey models with delay and prey harvesting, Journal of Mathematical Biology, 43 (2001) , 247-267.  doi: 10.1007/s002850100095.
      M. Pascual , Diffusion-induced chaos in a spatial predator-prey system, Proceedings of the Royal Society of London B: Biological Sciences, 251 (1993) , 1-7.  doi: 10.1098/rspb.1993.0001.
      M. L. Rosenzweig  and  R. H. MacArthur , Graphical representation and stability conditions of predator-prey interactions, Am. Nat., 97 (1963) , 209-223.  doi: 10.1086/282272.
      S. Sen, P. Ghosh and S. S. Riaz et al. , Time-delay-induced instabilities in reaction-diffusion systems, Phys. Rev. E, 80 (2009), 046212. doi: 10.1103/PhysRevE.80.046212.
      A. R. E. Sinclair , S. Mduma  and  J. S. Brashares , Patterns of predation in a diverse predator-prey system, Nature, 425 (2003) , 288-290.  doi: 10.1038/nature01934.
      L. A. de Souza  and  C. E. de Carvalho Freitas , Fishing sustainability via inclusion of man in predator-prey models: A case study in Lago Preto, Manacapuru, Amazonas, Ecological Modelling, 221 (2010) , 703-712.  doi: 10.1016/j.ecolmodel.2009.04.037.
      Y. Su , S. Ruan  and  J. Wei , Periodicity and synchronization in blood-stage malaria infection, Journal of Mathematical Biology, 63 (2011) , 557-574.  doi: 10.1007/s00285-010-0381-5.
      Y. Su , J. Wei  and  J. Shi , Hopf bifurcations in a reaction-diffusion population model with delay effect, Journal of Differential Equations, 247 (2009) , 1156-1184.  doi: 10.1016/j.jde.2009.04.017.
      G.-Q. Sun , Mathematical modeling of population dynamics with Allee effect, Nonlinear Dynamics, 85 (2016) , 1-12.  doi: 10.1007/s11071-016-2671-y.
      G.-Q. Sun , Z. Jin  and  L. Li , Spatial patterns of a predator-prey model with cross diffusion, Nonlinear Dynamics, 69 (2012) , 1631-1638.  doi: 10.1007/s11071-012-0374-6.
      G. Sun , Z. Jin  and  Q.-X. Liu , Pattern formation in a spatial S-I model with non-linear incidence rates, Journal of Statistical Mechanics: Theory and Experiment, 2007 (2007) , P11011(1-14). 
      G.-Q. Sun , M. Jusup  and  Z. Jin , Pattern transitions in spatial epidemics: Mechanisms and emergent properties, Physics of Life Reviews, 19 (2016) , 43-47.  doi: 10.1016/j.plrev.2016.08.002.
      G. -Q. Sun, S. -L. Wang and Q. Ren, et al. , Effects of time delay and space on herbivore dynamics: linking inducible defenses of plants to herbivore outbreak, Scientific Reports, 5 (2015), 11246. doi: 10.1038/srep11246.
      G.-Q. Sun , Z.-Y. Wu  and  Z. Jin , Influence of isolation degree of spatial patterns on persistence of populations, Nonlinear Dynamics, 83 (2016) , 811-819.  doi: 10.1007/s11071-015-2369-6.
      G.-Q. Sun , J. Zhang  and  L. P. Song , Pattern formation of a spatial predator-prey system, Applied Mathematics and Computation, 218 (2012) , 11151-11162.  doi: 10.1016/j.amc.2012.04.071.
      K. Uriu  and  Y. Iwasa , Turing pattern formation with two kinds of cells and a diffusive chemical, Bulletin of Mathematical Biology, 69 (2007) , 2515-2536.  doi: 10.1007/s11538-007-9230-0.
      E. Venturino , The influence of diseases on Lotka-Volterra systems, Rocky Mountain Journal of Mathematics, 24 (1994) , 381-402.  doi: 10.1216/rmjm/1181072471.
      E. Venturino , Epidemics in predator-prey models: disease in the predators, Mathematical Medicine and Biology, 19 (2002) , 185-205.  doi: 10.1093/imammb/19.3.185.
      V. Volterra , Fluctuations in the abundance of a species considered mathematically, Nature, 118 (1926) , 558-560.  doi: 10.1038/118558a0.
      V. Volterra , Variations and fluctuations of the number of individuals in animal species living together, J. Cons. Int. Explor. Mer., 3 (1928) , 3-51.  doi: 10.1093/icesjms/3.1.3.
      K. A. J. White  and  C. A. Gilligan , Spatial heterogeneity in three species, plant-parasite-hyperparasite systems, Philosophical Transactions of the Royal Society of London B, 353 (1998) , 543-557.  doi: 10.1098/rstb.1998.0226.
      Y. Xiao  and  L. Chen , Modeling and analysis of a predator-prey model with disease in the prey, Mathematical Biosciences, 171 (2001) , 59-82.  doi: 10.1016/S0025-5564(01)00049-9.
      Y. Xiao  and  L. Chen , Analysis of a three species eco-epidemiological model, Journal of Mathematical Analysis and Applications, 258 (2001) , 733-754.  doi: 10.1006/jmaa.2001.7514.
      D. Xiao , W. Li  and  M. Han , Dynamics in a ratio-dependent predator-prey model with predator harvesting, Journal of Mathematical Analysis and Applications, 324 (2006) , 14-29.  doi: 10.1016/j.jmaa.2005.11.048.
      Y. Xiao  and  F. Van Den Bosch , The dynamics of an eco-epidemic model with biological control, Ecological Modelling, 168 (2003) , 203-214.  doi: 10.1016/S0304-3800(03)00197-2.
      F. Yi , J. Wei  and  J. Shi , Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system, Journal of Differential Equations, 246 (2009) , 1944-1977.  doi: 10.1016/j.jde.2008.10.024.
      P. Yu , Closed-form conditions of bifurcation points for general differential equations, International Journal of Bifurcation and Chaos, 15 (2005) , 1467-1483.  doi: 10.1142/S0218127405012582.
      J. Zhang , Z. Jin  and  G.-Q. Sun , Modeling seasonal rabies epidemics in China, Bulletin of Mathematical Biology, 74 (2012) , 1226-1251.  doi: 10.1007/s11538-012-9720-6.
  • 加载中

Figures(7)

SHARE

Article Metrics

HTML views(1908) PDF downloads(451) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return