October  2017, 10(5): 1043-1050. doi: 10.3934/dcdss.2017055

A kind of generalized transversality theorem for $C^r$ mapping with parameter

1. 

Department of Mathematics, Jilin University, Changchun, 130012, China

2. 

School of Science, Qiqihar University, Qiqihar, 161006, China

Received  August 2016 Revised  January 2017 Published  June 2017

Fund Project: The author is supported by NSFC grant No.11671070, Science Foundation of Heilongjiang Province of China No.QC2016008, and the Fundamental Research Funds for Education Department of Heilongjiang Province No.135109234.

The author considers a generalized transversality theorem of the mappings with parameter in infinite dimensional Banach space. If the mapping is generalized transversal to a single point set, and in the sense of exterior parameters, the mapping is a Fredholm operator, then there exists a residual set of parameter, such that the Fredholm operator is generalized transversal to the single point set.

Citation: Qiang Li. A kind of generalized transversality theorem for $C^r$ mapping with parameter. Discrete and Continuous Dynamical Systems - S, 2017, 10 (5) : 1043-1050. doi: 10.3934/dcdss.2017055
References:
[1]

K. C. Chang, Methods in Nonlinear Analysis, Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2005.

[2]

J. P. Ma, (1-2) Inverses of operators between banach spaces and local conjugacy theorem, Chinese Ann. Math. Ser. B, 20 (1999), 57-62.  doi: 10.1142/S0252959999000084.

[3]

J. P. Ma, A generalized preimage theorem in global analysis, Sci. China. Ser. A, 44 (2001), 299-303.  doi: 10.1007/BF02878710.

[4]

J. P. Ma, A generalized transversality in global analysis, Pacific J.Math., 236 (2008), 357-371.  doi: 10.2140/pjm.2008.236.357.

[5]

M. Z. Nashed, Generalized Inverses and Applications, New York-San Francisco-London: Academic Pr. , 1976.

[6]

E. Zeidler, Nonlinear Functional Analysis and its Applications, Springer Verlag, New York-Berline, 1988. doi: 10.1007/978-1-4612-4838-5.

show all references

References:
[1]

K. C. Chang, Methods in Nonlinear Analysis, Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2005.

[2]

J. P. Ma, (1-2) Inverses of operators between banach spaces and local conjugacy theorem, Chinese Ann. Math. Ser. B, 20 (1999), 57-62.  doi: 10.1142/S0252959999000084.

[3]

J. P. Ma, A generalized preimage theorem in global analysis, Sci. China. Ser. A, 44 (2001), 299-303.  doi: 10.1007/BF02878710.

[4]

J. P. Ma, A generalized transversality in global analysis, Pacific J.Math., 236 (2008), 357-371.  doi: 10.2140/pjm.2008.236.357.

[5]

M. Z. Nashed, Generalized Inverses and Applications, New York-San Francisco-London: Academic Pr. , 1976.

[6]

E. Zeidler, Nonlinear Functional Analysis and its Applications, Springer Verlag, New York-Berline, 1988. doi: 10.1007/978-1-4612-4838-5.

Figure 1.  $f(s,t)=(s,s^3,t)$ is generalized transversal to $P=\{(0,0,z)\mid z\in \mathbb{R}\}$ mod $\mathbb{R}^3$
Figure 2.  $F(u,s)=(e^{u^2+s^2}-e,u^2+s^2-1)$ is generalized transversal to $P=\{\theta\}$ mod $\mathbb{R}^2$
[1]

Ruhua Wang, Senjian An, Wanquan Liu, Ling Li. Fixed-point algorithms for inverse of residual rectifier neural networks. Mathematical Foundations of Computing, 2021, 4 (1) : 31-44. doi: 10.3934/mfc.2020024

[2]

Bruno Sixou, Cyril Mory. Kullback-Leibler residual and regularization for inverse problems with noisy data and noisy operator. Inverse Problems and Imaging, 2019, 13 (5) : 1113-1137. doi: 10.3934/ipi.2019050

[3]

Sina Greenwood, Rolf Suabedissen. 2-manifolds and inverse limits of set-valued functions on intervals. Discrete and Continuous Dynamical Systems, 2017, 37 (11) : 5693-5706. doi: 10.3934/dcds.2017246

[4]

Jiangfeng Huang, Zhiliang Deng, Liwei Xu. A Bayesian level set method for an inverse medium scattering problem in acoustics. Inverse Problems and Imaging, 2021, 15 (5) : 1077-1097. doi: 10.3934/ipi.2021029

[5]

Guillaume Bal, Alexandre Jollivet. Generalized stability estimates in inverse transport theory. Inverse Problems and Imaging, 2018, 12 (1) : 59-90. doi: 10.3934/ipi.2018003

[6]

Tran Ngoc Thang, Nguyen Thi Bach Kim. Outcome space algorithm for generalized multiplicative problems and optimization over the efficient set. Journal of Industrial and Management Optimization, 2016, 12 (4) : 1417-1433. doi: 10.3934/jimo.2016.12.1417

[7]

Qingbang Zhang, Caozong Cheng, Xuanxuan Li. Generalized minimax theorems for two set-valued mappings. Journal of Industrial and Management Optimization, 2013, 9 (1) : 1-12. doi: 10.3934/jimo.2013.9.1

[8]

Alireza Ghaffari Hadigheh, Tamás Terlaky. Generalized support set invariancy sensitivity analysis in linear optimization. Journal of Industrial and Management Optimization, 2006, 2 (1) : 1-18. doi: 10.3934/jimo.2006.2.1

[9]

Behrouz Kheirfam, Kamal mirnia. Comments on ''Generalized support set invariancy sensitivity analysis in linear optimization''. Journal of Industrial and Management Optimization, 2008, 4 (3) : 611-616. doi: 10.3934/jimo.2008.4.611

[10]

Kazuhiro Kawamura. Mean dimension of shifts of finite type and of generalized inverse limits. Discrete and Continuous Dynamical Systems, 2020, 40 (8) : 4767-4775. doi: 10.3934/dcds.2020200

[11]

Laurent Bourgeois, Houssem Haddar. Identification of generalized impedance boundary conditions in inverse scattering problems. Inverse Problems and Imaging, 2010, 4 (1) : 19-38. doi: 10.3934/ipi.2010.4.19

[12]

Michael Kiermaier, Reinhard Laue. Derived and residual subspace designs. Advances in Mathematics of Communications, 2015, 9 (1) : 105-115. doi: 10.3934/amc.2015.9.105

[13]

Wangtao Lu, Shingyu Leung, Jianliang Qian. An improved fast local level set method for three-dimensional inverse gravimetry. Inverse Problems and Imaging, 2015, 9 (2) : 479-509. doi: 10.3934/ipi.2015.9.479

[14]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems and Imaging, 2021, 15 (3) : 387-413. doi: 10.3934/ipi.2020073

[15]

Jingjing Wang, Zaiyun Peng, Zhi Lin, Daqiong Zhou. On the stability of solutions for the generalized vector quasi-equilibrium problems via free-disposal set. Journal of Industrial and Management Optimization, 2021, 17 (2) : 869-887. doi: 10.3934/jimo.2020002

[16]

S. Yu. Pilyugin, Kazuhiro Sakai, O. A. Tarakanov. Transversality properties and $C^1$-open sets of diffeomorphisms with weak shadowing. Discrete and Continuous Dynamical Systems, 2006, 16 (4) : 871-882. doi: 10.3934/dcds.2006.16.871

[17]

Yi Wang, Dun Zhou. Transversality for time-periodic competitive-cooperative tridiagonal systems. Discrete and Continuous Dynamical Systems - B, 2015, 20 (6) : 1821-1830. doi: 10.3934/dcdsb.2015.20.1821

[18]

F. Balibrea, J. C. Valverde. Extreme degenerations for some generic bifurcations and new transversality conditions. Conference Publications, 2001, 2001 (Special) : 22-30. doi: 10.3934/proc.2001.2001.22

[19]

Gunther Uhlmann, Jenn-Nan Wang. Unique continuation property for the elasticity with general residual stress. Inverse Problems and Imaging, 2009, 3 (2) : 309-317. doi: 10.3934/ipi.2009.3.309

[20]

Rebecca Vandiver. Effect of residual stress on peak cap stress in arteries. Mathematical Biosciences & Engineering, 2014, 11 (5) : 1199-1214. doi: 10.3934/mbe.2014.11.1199

2020 Impact Factor: 2.425

Metrics

  • PDF downloads (330)
  • HTML views (57)
  • Cited by (0)

Other articles
by authors

[Back to Top]