Advanced Search
Article Contents
Article Contents

Traveling wave solutions of a reaction-diffusion predator-prey model

  • * the Corresponding author

    * the Corresponding author

This work is supported by the Natural Science Foundation of China (Grant No.11471146)

Abstract Full Text(HTML) Related Papers Cited by
  • This paper is concerned with the dynamics of traveling wave solutions for a reaction-diffusion predator-prey model with a nonlocal delay. By using Schauder's fixed point theorem, we establish the existence result of a traveling wave solution connecting two steady states by constructing a pair of upper-lower solutions which are easy to construct in practice. We also investigate the asymptotic behavior of traveling wave solutions by employing the standard asymptotic theory.

    Mathematics Subject Classification: Primary: 92D25, 35K57, 35C07.


    \begin{equation} \\ \end{equation}
  • 加载中
  •   N. F. Britton , Spatial structures and periodic traveling waves in an integrodifferential reaction-diffusion population model, SIAM. J. Appl. Math., 50 (1990) , 1663-1688.  doi: 10.1137/0150099.
      X. Chen and Z. J. Du, Existence of positive periodic solutions for a neutral delay predator-prey model with Hassell-Varley type functional response and impulse, Qual. Theory Dyn. Syst. , (2017). doi: 10.1007/s12346-017-0223-6.
      C. Conley  and  R. Gardner , An application of the generalized morse index to traveling wave solutions of a competitive reaction-diffusion model, Indiana Univ. Math. J., 33 (1984) , 319-343.  doi: 10.1512/iumj.1984.33.33018.
      Q. T. Gan , R. Xu  and  X. Zhang , Traveling wave of a three-species Lotka-Volterra food-chain model with spatial diffusion and time delays, Nonlinear. Anal., 11 (2010) , 2817-2832.  doi: 10.1016/j.nonrwa.2009.10.006.
      S. B. Hsu , T. W. Hwang  and  Y. Kuang , Golbal dynamics of a predator-prey model with Hassell-Varley type functional response, Discret. Contin. Dyn. Syst.B., 10 (2008) , 857-871.  doi: 10.3934/dcdsb.2008.10.857.
      J. H. Huang  and  X. F. Zou , Traveling wavefronts in diffusive and cooperative Lotka-Volterra system with delays, J. Math. Anal. Appl., 271 (2002) , 455-466.  doi: 10.1016/S0022-247X(02)00135-X.
      J. Huang  and  X. Zou , Traveling wave solutions in delayer reaction diffusion systems with partial monotonicity, Acta. Math. Appl. Sinica., 22 (2006) , 243-256.  doi: 10.1007/s10255-006-0300-0.
      X. Liang  and  X. Q. Zhao , Asymptotic speed of spread and traveling waves for monotone semiflows with applications, Comm. Pure. Appl. Math., 60 (2007) , 1-40.  doi: 10.1002/cpa.20154.
      Y. Lin , Q. R. Wang  and  K. Zhou , Traveling wave solutions in n-dimensional delayed reaction-diffusion systems with mixed monotonicity, J. Comput. Appl. Math., 243 (2013) , 16-27.  doi: 10.1016/j.cam.2012.11.007.
      G. Y. Lv  and  M. X. Wang , Existence, uniqueness and asymptotic behavior of taraveling wave fronts for a vector disease model, Nonlinear Anal., 11 (2010) , 2035-2043.  doi: 10.1016/j.nonrwa.2009.05.006.
      S. Ma , Traveling wavefronts for delayed reaction-diffusion systems via a fixed point theorem, J. Differetial Equations., 171 (2001) , 294-314.  doi: 10.1006/jdeq.2000.3846.
      K. W. Schaaf , Asymptotic behavior and traveling wave solutions for parabolic functional differetial equations, Trans. Amer. Math. Soc., 302 (1987) , 587-615.  doi: 10.2307/2000859.
      X. H. Shang , Z. J. Du  and  X. J. Lin , Traveling wave solutions in $n$-dimensional delayed reaction-diffusion systems and application to four-dimensional predator-prey systems, Math. Methods Appl. Sci., 39 (2016) , 1607-1620.  doi: 10.1002/mma.3595.
      R. Xu , A reaction-diffusion predator-prey model with stage structure and nonlocal delay, Appl. Math. Comput., 175 (2006) , 984-1006.  doi: 10.1016/j.amc.2005.08.014.
      R. Xu  and  Z. E. Ma , Global stability of a reaction-diffusion predator-prey model with a nonlocal delay, Math. Comput. Model., 50 (2009) , 194-206.  doi: 10.1016/j.mcm.2009.02.011.
      R. Xu  and  X. Zhang , Gobal stability and traveling waves of a predator-prey model with diffusion and nonlocal maturation delay, Comm. Nonlinear. Sci. Numer. Simulat., 15 (2010) , 3390-3401.  doi: 10.1016/j.cnsns.2009.12.031.
      G. B. Zhang , W. T. Li  and  G. Lin , Traveling wave in delayed predator-prey systems with nonlocal diffusion and stage structure, Math. Comput. Model., 49 (2009) , 1021-1029.  doi: 10.1016/j.mcm.2008.09.007.
      X. Zhang  and  R. Xu , Traveling waves of a diffusive predator-prey model with nonlocal delay and stage structure, J. Math. Anal. Appl., 373 (2011) , 475-484.  doi: 10.1016/j.jmaa.2010.07.044.
      K. Zhou  and  Q. R. Wang , Traveling wave solutions in delayed nonlocal diffusion systems with mixed monotonicity, J. Math. Anal. Appl., 372 (2010) , 598-610.  doi: 10.1016/j.jmaa.2010.07.032.
  • 加载中

Article Metrics

HTML views(176) PDF downloads(231) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint