October  2017, 10(5): 1095-1106. doi: 10.3934/dcdss.2017059

On concentration of semi-classical solitary waves for a generalized Kadomtsev-Petviashvili equation

a. 

School of Mathematics, Jilin University, Changchun 130012, China

b. 

School of Mathematics and Statistics, and Center for Mathematics and Interdisciplinary Sciences, Northeast Normal University, Changchun 130024, China

c. 

State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130012, China

* Corresponding author: Yuanhong Wei

Received  November 2016 Revised  November 2016 Published  June 2017

Fund Project: Y. Wei is supported by NSFC(grant No. 11301209). Y. Li is supported by National Basic Research Program of China (grant No. 2013CB834100), NSFC(grant No. 11571065) and NSFC(grant No. 11171132). X. Yang is supported by NSFC(grant No. 11201173).

The present paper is concerned with semi-classical solitary wave solutions of a generalized Kadomtsev-Petviashvili equation in $\mathbb{R}^{2}$. Parameter $\varepsilon$ and potential $V(x,y)$ are included in the problem. The existence of the least energy solution is established for all $\varepsilon>0$ small. Moreover, we point out that these solutions converge to a least energy solution of the associated limit problem and concentrate to the minimum point of the potential as $\varepsilon \to 0$.

Citation: Yuanhong Wei, Yong Li, Xue Yang. On concentration of semi-classical solitary waves for a generalized Kadomtsev-Petviashvili equation. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1095-1106. doi: 10.3934/dcdss.2017059
References:
[1]

M. J. Ablowitz and P. A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering, volume 149 of London Mathematical Society Lecture Note Series, Cambridge University Press, Cambridge, 1991. doi: 10.1017/CBO9780511623998.  Google Scholar

[2]

M. J. Ablowitz and H. Segur, Solitons and the Inverse Scattering Transform, volume 4 of SIAM Studies in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, Pa. , 1981.  Google Scholar

[3]

D. BorisT. Grava and C. Klein, On critical behaviour in generalized Kadomtsev-Petviashvili equations, Physica D: Nonlinear Phenomena, 333 (2016), 157-170.  doi: 10.1016/j.physd.2016.01.011.  Google Scholar

[4]

A. De Bouard and J.-C. Saut, Solitary waves of generalized Kadomtsev-Petviashvili equations, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, 14 (1997), 211-236.  doi: 10.1016/S0294-1449(97)80145-X.  Google Scholar

[5]

J. Bourgain, On the cauchy problem for the Kadomstev-Petviashvili equation, Geometric and Functional Analysis, 3 (1993), 315-341.  doi: 10.1007/BF01896259.  Google Scholar

[6]

M. del Pino and P. L. Felmer, Local mountain passes for semilinear elliptic problems in unbounded domains, Calc. Var. Partial Differential Equations, 4 (1996), 121-137.  doi: 10.1007/BF01189950.  Google Scholar

[7]

W. Ding and W. Ni, On the existence of positive entire solutions of a semilinear elliptic equation, Arch. Rational Mech. Anal., 91 (1986), 283-308.  doi: 10.1007/BF00282336.  Google Scholar

[8]

Y. Ding, Semi-classical ground states concentrating on the nonlinear potential for a Dirac equation, J. Differential Equations, 249 (2010), 1015-1034.  doi: 10.1016/j.jde.2010.03.022.  Google Scholar

[9]

Y. Ding and X. Liu, Semi-classical limits of ground states of a nonlinear Dirac equation, J. Differential Equations, 252 (2012), 4962-4987.  doi: 10.1016/j.jde.2012.01.023.  Google Scholar

[10]

Y. Ding and B. Ruf, Existence and concentration of semiclassical solutions for Dirac equations with critical nonlinearities, SIAM J. Math. Anal., 44 (2012), 3755-3785.  doi: 10.1137/110850670.  Google Scholar

[11]

Y. Ding and T. Xu, Localized concentration of semi-classical states for nonlinear Dirac equations, Arch. Ration. Mech. Anal., 216 (2015), 415-447.  doi: 10.1007/s00205-014-0811-4.  Google Scholar

[12]

B. B. Kadomtsev and V. I. Petviashvili, On the stability of solitary waves in weakly dispersing media, Soviet Physics Doklady, 15 (1970), 539. Google Scholar

[13]

C. Klein and J.-C. Saut, A numerical approach to blow-up issues for dispersive perturbations of Burgers' equation, Phys. D, 295/296 (2015), 46-65.  doi: 10.1016/j.physd.2014.12.004.  Google Scholar

[14]

Y. Liu, Blow up and instability of solitary-wave solutions to a generalized Kadomtsev-Petviashvili equation, Trans. Amer. Math. Soc., 353 (2001), 191-208.  doi: 10.1090/S0002-9947-00-02465-X.  Google Scholar

[15]

Y. Liu, Strong instability of solitary-wave solutions to a Kadomtsev-Petviashvili equation in three dimensions, J. Differential Equations, 180 (2002), 153-170.  doi: 10.1006/jdeq.2001.4054.  Google Scholar

[16]

Y. Liu and X.-P. Wang, Nonlinear stability of solitary waves of a generalized Kadomtsev-Petviashvili equation, Comm. Math. Phys., 183 (1997), 253-266.   Google Scholar

[17]

L. MolinetJ. C. Saut and N. Tzvetkov, Global well-posedness for the KP-Ⅰ equation, Math. Ann., 324 (2002), 255-275.  doi: 10.1007/s00208-002-0338-0.  Google Scholar

[18]

L. MolinetJ.-C. Saut and N. Tzvetkov, Well-posedness and ill-posedness results for the Kadomtsev-Petviashvili-Ⅰ equation, Duke Math. J., 115 (2002), 353-384.  doi: 10.1215/S0012-7094-02-11525-7.  Google Scholar

[19]

L. MolinetJ.C. Saut and N. Tzvetkov, Remarks on the mass constraint for KP-type equations, SIAM J. Math. Anal., 39 (2007), 627-641.  doi: 10.1137/060654256.  Google Scholar

[20]

J.-C. Saut, Remarks on the generalized Kadomtsev-Petviashvili equations, Indiana Univ. Math. J., 42 (1993), 1011-1026.  doi: 10.1512/iumj.1993.42.42047.  Google Scholar

[21]

S. Ukai, Local solutions of the Kadomtsev-Petviashvili equation, J. Fac. Sci. Univ. Tokyo, Sect. IA Math, 36 (1989), 193-209.   Google Scholar

[22]

X. Wang, On concentration of positive bound states of nonlinear Schrödinger equations, Comm. Math. Phys., 153 (1993), 229-244.  doi: 10.1007/BF02096642.  Google Scholar

[23]

M. Willem and Z.-Q. Wang, A multiplicity result for the generalized Kadomtsev-Petviashvili equation, Journal of the Juliusz Schauder Center, 7 (1996), 261-270.   Google Scholar

[24]

M. Willem, Minimax Theorems, volume 24. Birkhäuser Boston, Inc. , Boston, MA, 1996. doi: 10.1007/978-1-4612-4146-1.  Google Scholar

[25]

W. Zou, Solitary waves of the generalized Kadomtsev-Petviashvili equations, Appl. Math. Lett., 15 (2002), 35-39.  doi: 10.1016/S0893-9659(01)00089-1.  Google Scholar

show all references

References:
[1]

M. J. Ablowitz and P. A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering, volume 149 of London Mathematical Society Lecture Note Series, Cambridge University Press, Cambridge, 1991. doi: 10.1017/CBO9780511623998.  Google Scholar

[2]

M. J. Ablowitz and H. Segur, Solitons and the Inverse Scattering Transform, volume 4 of SIAM Studies in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, Pa. , 1981.  Google Scholar

[3]

D. BorisT. Grava and C. Klein, On critical behaviour in generalized Kadomtsev-Petviashvili equations, Physica D: Nonlinear Phenomena, 333 (2016), 157-170.  doi: 10.1016/j.physd.2016.01.011.  Google Scholar

[4]

A. De Bouard and J.-C. Saut, Solitary waves of generalized Kadomtsev-Petviashvili equations, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, 14 (1997), 211-236.  doi: 10.1016/S0294-1449(97)80145-X.  Google Scholar

[5]

J. Bourgain, On the cauchy problem for the Kadomstev-Petviashvili equation, Geometric and Functional Analysis, 3 (1993), 315-341.  doi: 10.1007/BF01896259.  Google Scholar

[6]

M. del Pino and P. L. Felmer, Local mountain passes for semilinear elliptic problems in unbounded domains, Calc. Var. Partial Differential Equations, 4 (1996), 121-137.  doi: 10.1007/BF01189950.  Google Scholar

[7]

W. Ding and W. Ni, On the existence of positive entire solutions of a semilinear elliptic equation, Arch. Rational Mech. Anal., 91 (1986), 283-308.  doi: 10.1007/BF00282336.  Google Scholar

[8]

Y. Ding, Semi-classical ground states concentrating on the nonlinear potential for a Dirac equation, J. Differential Equations, 249 (2010), 1015-1034.  doi: 10.1016/j.jde.2010.03.022.  Google Scholar

[9]

Y. Ding and X. Liu, Semi-classical limits of ground states of a nonlinear Dirac equation, J. Differential Equations, 252 (2012), 4962-4987.  doi: 10.1016/j.jde.2012.01.023.  Google Scholar

[10]

Y. Ding and B. Ruf, Existence and concentration of semiclassical solutions for Dirac equations with critical nonlinearities, SIAM J. Math. Anal., 44 (2012), 3755-3785.  doi: 10.1137/110850670.  Google Scholar

[11]

Y. Ding and T. Xu, Localized concentration of semi-classical states for nonlinear Dirac equations, Arch. Ration. Mech. Anal., 216 (2015), 415-447.  doi: 10.1007/s00205-014-0811-4.  Google Scholar

[12]

B. B. Kadomtsev and V. I. Petviashvili, On the stability of solitary waves in weakly dispersing media, Soviet Physics Doklady, 15 (1970), 539. Google Scholar

[13]

C. Klein and J.-C. Saut, A numerical approach to blow-up issues for dispersive perturbations of Burgers' equation, Phys. D, 295/296 (2015), 46-65.  doi: 10.1016/j.physd.2014.12.004.  Google Scholar

[14]

Y. Liu, Blow up and instability of solitary-wave solutions to a generalized Kadomtsev-Petviashvili equation, Trans. Amer. Math. Soc., 353 (2001), 191-208.  doi: 10.1090/S0002-9947-00-02465-X.  Google Scholar

[15]

Y. Liu, Strong instability of solitary-wave solutions to a Kadomtsev-Petviashvili equation in three dimensions, J. Differential Equations, 180 (2002), 153-170.  doi: 10.1006/jdeq.2001.4054.  Google Scholar

[16]

Y. Liu and X.-P. Wang, Nonlinear stability of solitary waves of a generalized Kadomtsev-Petviashvili equation, Comm. Math. Phys., 183 (1997), 253-266.   Google Scholar

[17]

L. MolinetJ. C. Saut and N. Tzvetkov, Global well-posedness for the KP-Ⅰ equation, Math. Ann., 324 (2002), 255-275.  doi: 10.1007/s00208-002-0338-0.  Google Scholar

[18]

L. MolinetJ.-C. Saut and N. Tzvetkov, Well-posedness and ill-posedness results for the Kadomtsev-Petviashvili-Ⅰ equation, Duke Math. J., 115 (2002), 353-384.  doi: 10.1215/S0012-7094-02-11525-7.  Google Scholar

[19]

L. MolinetJ.C. Saut and N. Tzvetkov, Remarks on the mass constraint for KP-type equations, SIAM J. Math. Anal., 39 (2007), 627-641.  doi: 10.1137/060654256.  Google Scholar

[20]

J.-C. Saut, Remarks on the generalized Kadomtsev-Petviashvili equations, Indiana Univ. Math. J., 42 (1993), 1011-1026.  doi: 10.1512/iumj.1993.42.42047.  Google Scholar

[21]

S. Ukai, Local solutions of the Kadomtsev-Petviashvili equation, J. Fac. Sci. Univ. Tokyo, Sect. IA Math, 36 (1989), 193-209.   Google Scholar

[22]

X. Wang, On concentration of positive bound states of nonlinear Schrödinger equations, Comm. Math. Phys., 153 (1993), 229-244.  doi: 10.1007/BF02096642.  Google Scholar

[23]

M. Willem and Z.-Q. Wang, A multiplicity result for the generalized Kadomtsev-Petviashvili equation, Journal of the Juliusz Schauder Center, 7 (1996), 261-270.   Google Scholar

[24]

M. Willem, Minimax Theorems, volume 24. Birkhäuser Boston, Inc. , Boston, MA, 1996. doi: 10.1007/978-1-4612-4146-1.  Google Scholar

[25]

W. Zou, Solitary waves of the generalized Kadomtsev-Petviashvili equations, Appl. Math. Lett., 15 (2002), 35-39.  doi: 10.1016/S0893-9659(01)00089-1.  Google Scholar

[1]

Yohei Yamazaki. Center stable manifolds around line solitary waves of the Zakharov–Kuznetsov equation with critical speed. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021008

[2]

Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298

[3]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[4]

Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021015

[5]

Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 569-600. doi: 10.3934/dcds.2020270

[6]

Takiko Sasaki. Convergence of a blow-up curve for a semilinear wave equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1133-1143. doi: 10.3934/dcdss.2020388

[7]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264

[8]

Manuel del Pino, Monica Musso, Juncheng Wei, Yifu Zhou. Type Ⅱ finite time blow-up for the energy critical heat equation in $ \mathbb{R}^4 $. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3327-3355. doi: 10.3934/dcds.2020052

[9]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[10]

Ludovick Gagnon, José M. Urquiza. Uniform boundary observability with Legendre-Galerkin formulations of the 1-D wave equation. Evolution Equations & Control Theory, 2021, 10 (1) : 129-153. doi: 10.3934/eect.2020054

[11]

Linglong Du, Min Yang. Pointwise long time behavior for the mixed damped nonlinear wave equation in $ \mathbb{R}^n_+ $. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020033

[12]

Mokhtari Yacine. Boundary controllability and boundary time-varying feedback stabilization of the 1D wave equation in non-cylindrical domains. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021004

[13]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[14]

Yi-Long Luo, Yangjun Ma. Low Mach number limit for the compressible inertial Qian-Sheng model of liquid crystals: Convergence for classical solutions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 921-966. doi: 10.3934/dcds.2020304

[15]

Ugo Bessi. Another point of view on Kusuoka's measure. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020404

[16]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[17]

Angelica Pachon, Federico Polito, Costantino Ricciuti. On discrete-time semi-Markov processes. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1499-1529. doi: 10.3934/dcdsb.2020170

[18]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[19]

Gang Luo, Qingzhi Yang. The point-wise convergence of shifted symmetric higher order power method. Journal of Industrial & Management Optimization, 2021, 17 (1) : 357-368. doi: 10.3934/jimo.2019115

[20]

Sabira El Khalfaoui, Gábor P. Nagy. On the dimension of the subfield subcodes of 1-point Hermitian codes. Advances in Mathematics of Communications, 2021, 15 (2) : 219-226. doi: 10.3934/amc.2020054

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (109)
  • HTML views (67)
  • Cited by (0)

Other articles
by authors

[Back to Top]