This paper is devoted to the invasion traveling wave solutions for a temporally discrete delayed reaction-diffusion competitive system. The existence of invasion traveling wave solutions is established by using Schauder's fixed point Theorem. Ikeharaś theorem is applied to show the asymptotic behaviors. We further investigate the monotonicity and uniqueness invasion traveling waves with the help of sliding method and strong maximum principle.
Citation: |
J. Carr
and A. Chmaj
, Uniqueness of travelling waves for nonlocal monostable equations, Proc. Amer. Math. Soc., 132 (1998)
, 2433-2439.
doi: 10.1090/S0002-9939-04-07432-5.![]() ![]() ![]() |
|
X. Chen
, S. C. Fu
and J. S. Guo
, Uniqueness and asymptotics of traveling waves of monostable dynamics on lattices, SIAM J. Math. Anal., 38 (2006)
, 233-258.
doi: 10.1137/050627824.![]() ![]() ![]() |
|
X. Chen
, Existence, uniqueness, and asymptotic stability of traveling waves in nonlocal evolution equations, Adv. Differential Eqns., 2 (1997)
, 125-160.
![]() ![]() |
|
J. S. Guo
and C. H. Wu
, Traveling wave front for a two-component lattice dynamical system arising in competition models, J. Differ. Equ., 252 (2012)
, 4357-4391.
doi: 10.1016/j.jde.2012.01.009.![]() ![]() ![]() |
|
J. Guo
and X. Liang
, The Minimal Speed of Traveling Fronts for the Lotka-Volterra Competition System, J. Dyn. Differ. Eqns., 23 (2011)
, 353-363.
doi: 10.1007/s10884-011-9214-5.![]() ![]() ![]() |
|
C. Hauptmann
, H. Touchette
and M. Mackey
, Influence of spatiotemporally correlated noise on structure formation in excitable media, Phys. Rev. E., 67 (2003)
.
![]() |
|
Y. Hosono
, The minimal speed of traveling fronts for a diffusive Lotka-Volterra competition model, Bull. Math. Biol., 60 (1998)
, 435-448.
doi: 10.1006/bulm.1997.0008.![]() ![]() |
|
X. Hou
and A. Leung
, Traveling wave solutions for a competitive reaction-diffusion system and their asymptotics, Nonlinear Anal. RWA., 9 (2008)
, 2196-2213.
doi: 10.1016/j.nonrwa.2007.07.007.![]() ![]() ![]() |
|
C. H. Hsu and T. S. Yang, Existence, uniqueness, monotonicity and asymptotic behavior of traveling waves for a epidemic model, Nonlinearity, 26 (2013), 121-139; Corrigendum, 26 (2013), 2925-2928.
doi: 10.1088/0951-7715/26/10/2925.![]() ![]() ![]() |
|
W. Huang
, Problem on minimum wave speed for a Lotka-Volterra reaction-diffusion competition model, J. Dyn. Differ. Eqns, 22 (2010)
, 285-297.
doi: 10.1007/s10884-010-9159-0.![]() ![]() ![]() |
|
W. Huang
and M. Han
, Non-linear determinacy of minimum wave speed for a Lotka-Volterra competition model, J. Differ. Eqns., 251 (2011)
, 1549-1561.
doi: 10.1016/j.jde.2011.05.012.![]() ![]() ![]() |
|
J. H. Huang
and X. F. Zou
, Existence of traveling wavefronts of delayed reaction diffusion systems without monotonicity, Disc. Contin. Dyn. Syst., 9 (2003)
, 925-936.
doi: 10.3934/dcds.2003.9.925.![]() ![]() ![]() |
|
J. Kanel
and L. Zhou
, Existence of wave front solutions and estimates of wave speed for a competition-diffusion system, Nonlinear Anal. TMA., 27 (1996)
, 579-587.
doi: 10.1016/0362-546X(95)00221-G.![]() ![]() ![]() |
|
M. Kot
, Discrete-time traveling waves: Ecological examples, J. Math. Biol., 30 (1992)
, 413-436.
doi: 10.1007/BF00173295.![]() ![]() ![]() |
|
M. Kot
and W. Schaffer
, Discrete-time growth-dispersal models, J. Math. Biol., 80 (1986)
, 109-136.
doi: 10.1016/0025-5564(86)90069-6.![]() ![]() ![]() |
|
K. Li
and X. Li
, Traveling wave solutions in a delayed diffusive competition system, Nonlinear Anal. TMA., 75 (2012)
, 3705-3722.
doi: 10.1016/j.na.2012.01.024.![]() ![]() ![]() |
|
W. T. Li
, G. Lin
and S. G. Ruan
, Existence of travelling wave solutions in delayed reaction-diffusion systems with applications to diffusion-competition systems, Nonlinearity, 19 (2006)
, 1253-1273.
doi: 10.1088/0951-7715/19/6/003.![]() ![]() ![]() |
|
G. Lin
and W. T. Li
, Traveling wavefronts in temporally discrete reaction-diffusion equations with delay, Nonlinear Anal., Real World Appl., 9 (2008)
, 197-205.
doi: 10.1016/j.nonrwa.2006.11.003.![]() ![]() ![]() |
|
G. Y. Lv
and M. X. Wang
, Traveling wave front in diffusive and competitive Lotka-Volterra system with delays, Nonlinear Anal. RWA., 11 (2010)
, 1323-1329.
doi: 10.1016/j.nonrwa.2009.02.020.![]() ![]() ![]() |
|
S. W. Ma
, Traveling wavefronts for delayed rection-diffusion systems via a fixed point theorem, J. Differ. Equ., 171 (2001)
, 294-314.
doi: 10.1006/jdeq.2000.3846.![]() ![]() ![]() |
|
S. Mohamad
and K. Gopalsamy
, Dynamics of a class of discrete-time neural networks and their continuous-time counterparts, Math. Comput. Simulat., 53 (2000)
, 1-39.
doi: 10.1016/S0378-4754(00)00168-3.![]() ![]() ![]() |
|
L. I. W. Roeger
, Dynamically consistent discrete Lotka-Volterra competition models derived from nonstandard finite-difference schemes, Discret. Contin. Dyn. Syst. B., 9 (2008)
, 415-429.
doi: 10.3934/dcdsb.2008.9.415.![]() ![]() ![]() |
|
T. Shibata
and K. Kaneko
, Coupled map gas: Structure formation and dynamics of interacting motile elements with internal dynamics, Physica D., 181 (2003)
, 197-214.
doi: 10.1016/S0167-2789(03)00101-5.![]() ![]() |
|
M. Tang
and P. Fife
, Propagation fronts in competing species equations with diffusion, Arch. Ration. Mech. Anal., 73 (1980)
, 69-77.
doi: 10.1007/BF00283257.![]() ![]() ![]() |
|
J. van Vuuren
, The existence of traveling plane waves in a general class of competition-diffusion systems, IMA J. Appl. Math., 55 (1995)
, 135-148.
doi: 10.1093/imamat/55.2.135.![]() ![]() ![]() |
|
D. V. Widder, The Laplace Tranform, Princeton University Press, Princeton, 1941.
![]() ![]() |
|
J. Wu
and X. Zou
, Traveling wave fronts of reaction diffusion systems with delay, J Dynam. Diff. Eqns., 13 (2001)
, 651-687.
doi: 10.1023/A:1016690424892.![]() ![]() ![]() |
|
J. Xia
and Z. X. Yu
, Traveling wave solutions in temporally discrete reaction-diffusion systems with delays, Z. Angew. Math. Mech., 91 (2011)
, 809-823.
doi: 10.1002/zamm.201000157.![]() ![]() ![]() |
|
X. Yang
and Y. Wang
, Travelling wave and global attractivity in a competition-diffusion system with nonlocal delays, Comput. Math. Appl., 59 (2010)
, 3338-3350.
doi: 10.1016/j.camwa.2010.03.020.![]() ![]() ![]() |
|
Z. X. Yu
and M. Mei
, Uniqueness and stability of traveling waves for cellular neural networks with multiple delays, J. Differential Eqns., 260 (2016)
, 241-267.
doi: 10.1016/j.jde.2015.08.037.![]() ![]() ![]() |
|
Z. X. Yu
and R. Yuan
, Traveling waves of delayed reaction diffusion systems with applications, Nonlinear Anal. RWA., 12 (2011)
, 2475-2488.
doi: 10.1016/j.nonrwa.2011.02.005.![]() ![]() ![]() |
|
Z. X. Yu
and R. Yuan
, Traveling waves for a Lotka-Volterra competition system with diffusion, Math. Comput. Model, 53 (2011)
, 1035-1043.
doi: 10.1016/j.mcm.2010.11.061.![]() ![]() ![]() |
|
Z. Yu
and R. Yuan
, Existence, asymptotics and uniqueness of traveling waves for nonlocal diffusion systems with delayed nonlocal response, Taiwanese J. Math., 17 (2013)
, 2163-2190.
doi: 10.11650/tjm.17.2013.3794.![]() ![]() ![]() |
|
Z. X. Yu
and H. K. Zhao
, Traveling waves for competitive Lotka-Volterra systems with spatial diffusions and spatio-temporal delays, Appl. Math. Comput., 242 (2014)
, 669-678.
doi: 10.1016/j.amc.2014.06.058.![]() ![]() ![]() |
|
X. Q. Zhao
and D. M. Xiao
, The asymptotic speed of spread and traveling waves for a vector disease model, J. Dynam. Differential Eqns., 18 (2006)
, 1001-1019.
doi: 10.1007/s10884-006-9044-z.![]() ![]() ![]() |