October  2017, 10(5): 1149-1164. doi: 10.3934/dcdss.2017062

Dynamics and spatiotemporal pattern formations of a homogeneous reaction-diffusion Thomas model

1. 

School of Science, Heilongjiang University of Science and Technology, Harbin, Heilongjiang Province, 150022, China

2. 

School of Science, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150001, China

3. 

School of Information and Electronics, Beijing Institute of Technology, Beijing 100089, China

* Corresponding author: Hongyan Zhang

Received  December 2016 Revised  January 2017 Published  June 2017

Fund Project: The first author is supported by NSF of China grant 11371108.

In this paper, we are mainly considered with a kind of homogeneous diffusive Thomas model arising from biochemical reaction. Firstly, we use the invariant rectangle technique to prove the global existence and uniqueness of the positive solutions of the parabolic system, and then use the maximum principle to show the existence of attraction region which attracts all the solutions of the system regardless of the initial values. Secondly, we consider the long time behaviors of the solutions of the system; Thirdly, we derive precise parameter ranges where the system does not have non-constant steady states by using use some useful inequalities and a priori estimates; Finally, we prove the existence of Turing patterns by using the steady state bifurcation theory.

Citation: Hongyan Zhang, Siyu Liu, Yue Zhang. Dynamics and spatiotemporal pattern formations of a homogeneous reaction-diffusion Thomas model. Discrete and Continuous Dynamical Systems - S, 2017, 10 (5) : 1149-1164. doi: 10.3934/dcdss.2017062
References:
[1]

E. ConwayD. Hoff and J. Smoller, Large time behavior of solutions of systems of nonlinear reaction-diffusion equations, SIAM J. Appl. Math., 35 (1978), 1-16.  doi: 10.1137/0135001.

[2]

A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall: Englewood Cliffs, NJ, 1964.

[3]

L. Markus, Asymptotically autonomous differential systems, Contributions to the Theory of Nonlinear Oscillations, 3 (1956), 17-29. 

[4]

M. Mimura and J. Muarry, Spatial structures in a model substrate-inhibition reaction diffusion system, Z. Naturforsh, 33 (1978), 580-586. 

[5]

W. Ni and M. Tang, Turing patterns in the Lengyel-Epstein system for the CIMA reactions, Trans. Amer. Math. Soc., 357 (2005), 3953-3969.  doi: 10.1090/S0002-9947-05-04010-9.

[6]

Y. Nishiura, Global structure of bifurcating solutions of some reaction diffusion systems, SIAM J. Math. Anal., 13 (1982), 555-593.  doi: 10.1137/0513037.

[7]

F. Seelig, Chemical oscillations by substrate inhibition: A parametrically universal oscillator type in homogeneous catalysis by metal complex formation, Z. Naturforsh, 31 (1976), 731-738.  doi: 10.1515/zna-1976-0710.

[8]

J. Shi and X. Wang, On global bifurcation for quasilinear elliptic systems on bounded domains, J. Differential Equations, 246 (2009), 2788-2812.  doi: 10.1016/j.jde.2008.09.009.

[9]

D. Thomas, Artifical enzyme membranes, transport, memory, and oscillatory phenomena, In: D. Thomas and J. Kernevez (eds) Analysis and Control of Immobilized Enzymes Systems, Berlin Heidelberg New York: Springer 1975,115-150.

[10]

F. YiS. Liu and N. Tuncer, Spatiotemporal patterns of a reaction-diffusion substrate-inhibition Seelig model, J. Dyna. Differential Equations, 29 (2017), 219-241.  doi: 10.1007/s10884-015-9444-z.

[11]

F. YiJ. Wei and J. Shi, Bifurcation and spatiotemporal patterns in a homogenous diffusive predator-prey system, J. Differential Equations, 246 (2009), 1944-1977.  doi: 10.1016/j.jde.2008.10.024.

show all references

References:
[1]

E. ConwayD. Hoff and J. Smoller, Large time behavior of solutions of systems of nonlinear reaction-diffusion equations, SIAM J. Appl. Math., 35 (1978), 1-16.  doi: 10.1137/0135001.

[2]

A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall: Englewood Cliffs, NJ, 1964.

[3]

L. Markus, Asymptotically autonomous differential systems, Contributions to the Theory of Nonlinear Oscillations, 3 (1956), 17-29. 

[4]

M. Mimura and J. Muarry, Spatial structures in a model substrate-inhibition reaction diffusion system, Z. Naturforsh, 33 (1978), 580-586. 

[5]

W. Ni and M. Tang, Turing patterns in the Lengyel-Epstein system for the CIMA reactions, Trans. Amer. Math. Soc., 357 (2005), 3953-3969.  doi: 10.1090/S0002-9947-05-04010-9.

[6]

Y. Nishiura, Global structure of bifurcating solutions of some reaction diffusion systems, SIAM J. Math. Anal., 13 (1982), 555-593.  doi: 10.1137/0513037.

[7]

F. Seelig, Chemical oscillations by substrate inhibition: A parametrically universal oscillator type in homogeneous catalysis by metal complex formation, Z. Naturforsh, 31 (1976), 731-738.  doi: 10.1515/zna-1976-0710.

[8]

J. Shi and X. Wang, On global bifurcation for quasilinear elliptic systems on bounded domains, J. Differential Equations, 246 (2009), 2788-2812.  doi: 10.1016/j.jde.2008.09.009.

[9]

D. Thomas, Artifical enzyme membranes, transport, memory, and oscillatory phenomena, In: D. Thomas and J. Kernevez (eds) Analysis and Control of Immobilized Enzymes Systems, Berlin Heidelberg New York: Springer 1975,115-150.

[10]

F. YiS. Liu and N. Tuncer, Spatiotemporal patterns of a reaction-diffusion substrate-inhibition Seelig model, J. Dyna. Differential Equations, 29 (2017), 219-241.  doi: 10.1007/s10884-015-9444-z.

[11]

F. YiJ. Wei and J. Shi, Bifurcation and spatiotemporal patterns in a homogenous diffusive predator-prey system, J. Differential Equations, 246 (2009), 1944-1977.  doi: 10.1016/j.jde.2008.10.024.

[1]

Fengqi Yi, Eamonn A. Gaffney, Sungrim Seirin-Lee. The bifurcation analysis of turing pattern formation induced by delay and diffusion in the Schnakenberg system. Discrete and Continuous Dynamical Systems - B, 2017, 22 (2) : 647-668. doi: 10.3934/dcdsb.2017031

[2]

Eva Ahbe, Andrea Iannelli, Roy S. Smith. A novel moving orthonormal coordinate-based approach for region of attraction analysis of limit cycles. Journal of Computational Dynamics, 2022  doi: 10.3934/jcd.2022016

[3]

Ozgur Aydogmus, Yun Kang. Analysis of stationary patterns arising from a time-discrete metapopulation model with nonlocal competition. Discrete and Continuous Dynamical Systems - B, 2022, 27 (5) : 2917-2934. doi: 10.3934/dcdsb.2021166

[4]

Qixiang Wen, Shenquan Liu, Bo Lu. Firing patterns and bifurcation analysis of neurons under electromagnetic induction. Electronic Research Archive, 2021, 29 (5) : 3205-3226. doi: 10.3934/era.2021034

[5]

Julijana Gjorgjieva, Jon Jacobsen. Turing patterns on growing spheres: the exponential case. Conference Publications, 2007, 2007 (Special) : 436-445. doi: 10.3934/proc.2007.2007.436

[6]

Qi An, Weihua Jiang. Spatiotemporal attractors generated by the Turing-Hopf bifurcation in a time-delayed reaction-diffusion system. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 487-510. doi: 10.3934/dcdsb.2018183

[7]

Chengxin Du, Changchun Liu. Time periodic solution to a mechanochemical model in biological patterns. Evolution Equations and Control Theory, 2022  doi: 10.3934/eect.2022039

[8]

Xiaofeng Xu, Junjie Wei. Turing-Hopf bifurcation of a class of modified Leslie-Gower model with diffusion. Discrete and Continuous Dynamical Systems - B, 2018, 23 (2) : 765-783. doi: 10.3934/dcdsb.2018042

[9]

Myeongju Chae, Kyungkeun Kang, Jihoon Lee. Global well-posedness and long time behaviors of chemotaxis-fluid system modeling coral fertilization. Discrete and Continuous Dynamical Systems, 2020, 40 (4) : 2135-2163. doi: 10.3934/dcds.2020109

[10]

Linghai Zhang. Long-time asymptotic behaviors of solutions of $N$-dimensional dissipative partial differential equations. Discrete and Continuous Dynamical Systems, 2002, 8 (4) : 1025-1042. doi: 10.3934/dcds.2002.8.1025

[11]

Guillaume Cantin, Cristiana J. Silva, Arnaud Banos. Mathematical analysis of a hybrid model: Impacts of individual behaviors on the spreading of an epidemic. Networks and Heterogeneous Media, 2022, 17 (3) : 333-357. doi: 10.3934/nhm.2022010

[12]

Fengqi Yi, Hua Zhang, Alhaji Cherif, Wenying Zhang. Spatiotemporal patterns of a homogeneous diffusive system modeling hair growth: Global asymptotic behavior and multiple bifurcation analysis. Communications on Pure and Applied Analysis, 2014, 13 (1) : 347-369. doi: 10.3934/cpaa.2014.13.347

[13]

Steffen Härting, Anna Marciniak-Czochra, Izumi Takagi. Stable patterns with jump discontinuity in systems with Turing instability and hysteresis. Discrete and Continuous Dynamical Systems, 2017, 37 (2) : 757-800. doi: 10.3934/dcds.2017032

[14]

Pavel Krejčí, Jürgen Sprekels. Long time behaviour of a singular phase transition model. Discrete and Continuous Dynamical Systems, 2006, 15 (4) : 1119-1135. doi: 10.3934/dcds.2006.15.1119

[15]

Daoming Dai, Lei Liu, Xuanyu Wu. Analysis of the short-term game and long-term evolutionary game behaviors of the waste battery remanufacturing market considering government subsidies. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022119

[16]

Miaoran Yao, Yongxin Zhang, Wendi Wang. Bifurcation analysis for an in-host Mycobacterium tuberculosis model. Discrete and Continuous Dynamical Systems - B, 2021, 26 (4) : 2299-2322. doi: 10.3934/dcdsb.2020324

[17]

Bing Zeng, Pei Yu. A hierarchical parametric analysis on Hopf bifurcation of an epidemic model. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022069

[18]

Hunseok Kang. Asymptotic behavior of a discrete turing model. Discrete and Continuous Dynamical Systems, 2010, 27 (1) : 265-284. doi: 10.3934/dcds.2010.27.265

[19]

Eric Avila-Vales, Gerardo García-Almeida, Erika Rivero-Esquivel. Bifurcation and spatiotemporal patterns in a Bazykin predator-prey model with self and cross diffusion and Beddington-DeAngelis response. Discrete and Continuous Dynamical Systems - B, 2017, 22 (3) : 717-740. doi: 10.3934/dcdsb.2017035

[20]

Kun Wang, Yinnian He, Yanping Lin. Long time numerical stability and asymptotic analysis for the viscoelastic Oldroyd flows. Discrete and Continuous Dynamical Systems - B, 2012, 17 (5) : 1551-1573. doi: 10.3934/dcdsb.2012.17.1551

2021 Impact Factor: 1.865

Metrics

  • PDF downloads (246)
  • HTML views (79)
  • Cited by (0)

Other articles
by authors

[Back to Top]