October  2017, 10(5): 1149-1164. doi: 10.3934/dcdss.2017062

Dynamics and spatiotemporal pattern formations of a homogeneous reaction-diffusion Thomas model

1. 

School of Science, Heilongjiang University of Science and Technology, Harbin, Heilongjiang Province, 150022, China

2. 

School of Science, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150001, China

3. 

School of Information and Electronics, Beijing Institute of Technology, Beijing 100089, China

* Corresponding author: Hongyan Zhang

Received  December 2016 Revised  January 2017 Published  June 2017

Fund Project: The first author is supported by NSF of China grant 11371108.

In this paper, we are mainly considered with a kind of homogeneous diffusive Thomas model arising from biochemical reaction. Firstly, we use the invariant rectangle technique to prove the global existence and uniqueness of the positive solutions of the parabolic system, and then use the maximum principle to show the existence of attraction region which attracts all the solutions of the system regardless of the initial values. Secondly, we consider the long time behaviors of the solutions of the system; Thirdly, we derive precise parameter ranges where the system does not have non-constant steady states by using use some useful inequalities and a priori estimates; Finally, we prove the existence of Turing patterns by using the steady state bifurcation theory.

Citation: Hongyan Zhang, Siyu Liu, Yue Zhang. Dynamics and spatiotemporal pattern formations of a homogeneous reaction-diffusion Thomas model. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1149-1164. doi: 10.3934/dcdss.2017062
References:
[1]

E. ConwayD. Hoff and J. Smoller, Large time behavior of solutions of systems of nonlinear reaction-diffusion equations, SIAM J. Appl. Math., 35 (1978), 1-16.  doi: 10.1137/0135001.  Google Scholar

[2]

A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall: Englewood Cliffs, NJ, 1964.  Google Scholar

[3]

L. Markus, Asymptotically autonomous differential systems, Contributions to the Theory of Nonlinear Oscillations, 3 (1956), 17-29.   Google Scholar

[4]

M. Mimura and J. Muarry, Spatial structures in a model substrate-inhibition reaction diffusion system, Z. Naturforsh, 33 (1978), 580-586.   Google Scholar

[5]

W. Ni and M. Tang, Turing patterns in the Lengyel-Epstein system for the CIMA reactions, Trans. Amer. Math. Soc., 357 (2005), 3953-3969.  doi: 10.1090/S0002-9947-05-04010-9.  Google Scholar

[6]

Y. Nishiura, Global structure of bifurcating solutions of some reaction diffusion systems, SIAM J. Math. Anal., 13 (1982), 555-593.  doi: 10.1137/0513037.  Google Scholar

[7]

F. Seelig, Chemical oscillations by substrate inhibition: A parametrically universal oscillator type in homogeneous catalysis by metal complex formation, Z. Naturforsh, 31 (1976), 731-738.  doi: 10.1515/zna-1976-0710.  Google Scholar

[8]

J. Shi and X. Wang, On global bifurcation for quasilinear elliptic systems on bounded domains, J. Differential Equations, 246 (2009), 2788-2812.  doi: 10.1016/j.jde.2008.09.009.  Google Scholar

[9]

D. Thomas, Artifical enzyme membranes, transport, memory, and oscillatory phenomena, In: D. Thomas and J. Kernevez (eds) Analysis and Control of Immobilized Enzymes Systems, Berlin Heidelberg New York: Springer 1975,115-150. Google Scholar

[10]

F. YiS. Liu and N. Tuncer, Spatiotemporal patterns of a reaction-diffusion substrate-inhibition Seelig model, J. Dyna. Differential Equations, 29 (2017), 219-241.  doi: 10.1007/s10884-015-9444-z.  Google Scholar

[11]

F. YiJ. Wei and J. Shi, Bifurcation and spatiotemporal patterns in a homogenous diffusive predator-prey system, J. Differential Equations, 246 (2009), 1944-1977.  doi: 10.1016/j.jde.2008.10.024.  Google Scholar

show all references

References:
[1]

E. ConwayD. Hoff and J. Smoller, Large time behavior of solutions of systems of nonlinear reaction-diffusion equations, SIAM J. Appl. Math., 35 (1978), 1-16.  doi: 10.1137/0135001.  Google Scholar

[2]

A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall: Englewood Cliffs, NJ, 1964.  Google Scholar

[3]

L. Markus, Asymptotically autonomous differential systems, Contributions to the Theory of Nonlinear Oscillations, 3 (1956), 17-29.   Google Scholar

[4]

M. Mimura and J. Muarry, Spatial structures in a model substrate-inhibition reaction diffusion system, Z. Naturforsh, 33 (1978), 580-586.   Google Scholar

[5]

W. Ni and M. Tang, Turing patterns in the Lengyel-Epstein system for the CIMA reactions, Trans. Amer. Math. Soc., 357 (2005), 3953-3969.  doi: 10.1090/S0002-9947-05-04010-9.  Google Scholar

[6]

Y. Nishiura, Global structure of bifurcating solutions of some reaction diffusion systems, SIAM J. Math. Anal., 13 (1982), 555-593.  doi: 10.1137/0513037.  Google Scholar

[7]

F. Seelig, Chemical oscillations by substrate inhibition: A parametrically universal oscillator type in homogeneous catalysis by metal complex formation, Z. Naturforsh, 31 (1976), 731-738.  doi: 10.1515/zna-1976-0710.  Google Scholar

[8]

J. Shi and X. Wang, On global bifurcation for quasilinear elliptic systems on bounded domains, J. Differential Equations, 246 (2009), 2788-2812.  doi: 10.1016/j.jde.2008.09.009.  Google Scholar

[9]

D. Thomas, Artifical enzyme membranes, transport, memory, and oscillatory phenomena, In: D. Thomas and J. Kernevez (eds) Analysis and Control of Immobilized Enzymes Systems, Berlin Heidelberg New York: Springer 1975,115-150. Google Scholar

[10]

F. YiS. Liu and N. Tuncer, Spatiotemporal patterns of a reaction-diffusion substrate-inhibition Seelig model, J. Dyna. Differential Equations, 29 (2017), 219-241.  doi: 10.1007/s10884-015-9444-z.  Google Scholar

[11]

F. YiJ. Wei and J. Shi, Bifurcation and spatiotemporal patterns in a homogenous diffusive predator-prey system, J. Differential Equations, 246 (2009), 1944-1977.  doi: 10.1016/j.jde.2008.10.024.  Google Scholar

[1]

Susmita Sadhu. Complex oscillatory patterns near singular Hopf bifurcation in a two-timescale ecosystem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020342

[2]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[3]

Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020336

[4]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[5]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[6]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

[7]

Yining Cao, Chuck Jia, Roger Temam, Joseph Tribbia. Mathematical analysis of a cloud resolving model including the ice microphysics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 131-167. doi: 10.3934/dcds.2020219

[8]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[9]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

[10]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[11]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[12]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[13]

Qianqian Han, Xiao-Song Yang. Qualitative analysis of a generalized Nosé-Hoover oscillator. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020346

[14]

Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020446

[15]

Mingjun Zhou, Jingxue Yin. Continuous subsonic-sonic flows in a two-dimensional semi-infinitely long nozzle. Electronic Research Archive, , () : -. doi: 10.3934/era.2020122

[16]

Xin Guo, Lei Shi. Preface of the special issue on analysis in data science: Methods and applications. Mathematical Foundations of Computing, 2020, 3 (4) : i-ii. doi: 10.3934/mfc.2020026

[17]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[18]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[19]

Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020464

[20]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (68)
  • HTML views (71)
  • Cited by (0)

Other articles
by authors

[Back to Top]