The stability analysis of a chemotaxis model with a bistable growth term in both unbounded and bounded domains is studied analytically. By the global bifurcation theorem, we identify the full parameter regimes in which the steady state bifurcation occurs.
Citation: |
J. Adler
, Chemotaxis in bacteria, Science (New York, NY), 153 (1966)
, 708-716.
![]() |
|
M. Aida
, T. Tsujikawa
, M. Efendiev
, A. Yagi
and M. Mimura
, Lower estimate of the attractor dimension for a chemotaxis growth system, Journal of the London Mathematical Society, 74 (2006)
, 453-474.
doi: 10.1112/S0024610706023015.![]() ![]() ![]() |
|
E. O. Budrene
and H. C. Berg
, Complex patterns formed by motile cells of escherichia coli, Nature, 349 (1991)
, 630-633.
doi: 10.1038/349630a0.![]() ![]() |
|
M. A. J. Chaplain
and A. M. Stuart
, A model mechanism for the chemotactic response of endothelial cells to tumour angiogenesis factor, Mathematical Medicine and Biology, 10 (1993)
, 149-168.
doi: 10.1093/imammb/10.3.149.![]() ![]() |
|
A. Gamba
, D. Ambrosi
, A. Coniglio
, v De Candia
, S. Di Talia
, E. Giraudo
, G. Serini
, L. Preziosi
and F. Bussolino
, Percolation, morphogenesis, and burgers dynamics in blood vessels formation, Physical Review Letters, 90 (2003)
, 118101.
doi: 10.1103/PhysRevLett.90.118101.![]() ![]() |
|
R. E. Goldstein
, Traveling-wave chemotaxis, Physical Review Letters, 77 (1996)
, 775-778.
doi: 10.1103/PhysRevLett.77.775.![]() ![]() |
|
T. Hillen
and K. J. Painter
, A user's guide to pde models for chemotaxis, Journal of Mathematical Biology, 58 (2009)
, 183-217.
doi: 10.1007/s00285-008-0201-3.![]() ![]() ![]() |
|
D. Horstmann
, From 1970 until present: The keller-segel model in chemotaxis and its consequences, Jahresber. Deutsch. Math.-Verein, 105 (2003)
, 103-165.
![]() ![]() |
|
E. F. Keller
and L. A. Segel
, Initiation of slime mold aggregation viewed as an instability, Journal of Theoretical Biology, 26 (1970)
, 399-415.
doi: 10.1016/0022-5193(70)90092-5.![]() ![]() |
|
E. F. Keller
and L. A. Segel
, Model for chemotaxis, Journal of Theoretical Biology, 30 (1971)
, 225-234.
doi: 10.1016/0022-5193(71)90050-6.![]() ![]() |
|
M. Mimura
and T. Tsujikawa
, Aggregating pattern dynamics in a chemotaxis model including growth, Physica A: Statistical Mechanics and its Applications, 230 (1996)
, 499-543.
doi: 10.1016/0378-4371(96)00051-9.![]() ![]() |
|
J. D. Murray,
Mathematical Biology: Ⅰ. An Introduction, Third edition. Interdisciplinary Applied Mathematics, 17. Springer-Verlag, New York, 2002.
![]() ![]() |
|
M. Nelkin
, S. Meneveau
, K. R. Sreenivasan
and C. K. Peng
, Dynamics of formation of symmetrical patterns by chemotactic bacteria, Nature, 376 (1995)
, 49.
![]() |
|
K. Osaki
, T. Tsujikawa
, A. Yagi
and M. Mimura
, Exponential attractor for a chemotaxis-growth system of equations, Nonlinear Analysis: Theory, Methods & Applications, 51 (2002)
, 119-144.
doi: 10.1016/S0362-546X(01)00815-X.![]() ![]() ![]() |
|
K. J. Painter
, P. K. Maini
and H. G. Othmer
, Stripe formation in juvenile pomacanthus explained by a generalized turing mechanism with chemotaxis, Proceedings of the National Academy of Sciences, 96 (1999)
, 5549-5554.
doi: 10.1073/pnas.96.10.5549.![]() ![]() |
|
K. J. Painter
, P. K. Maini
and H. G. Othmer
, A chemotactic model for the advance and retreat of the primitive streak in avian development, Bulletin of Mathematical Biology, 62 (2000)
, 501-525.
![]() |
|
C. S. Patlak
, Random walk with persistence and external bias, Bulletin of Mathematical Biology, 15 (1953)
, 311-338.
doi: 10.1007/BF02476407.![]() ![]() ![]() |
|
G. J. Pettet
, H. M. Byrne
, D. L. S. McElwain
and J. Norbury
, A model of wound-healing angiogenesis in soft tissue, Mathematical Biosciences, 136 (1996)
, 35-63.
doi: 10.1016/0025-5564(96)00044-2.![]() ![]() |
|
J. Shi
and X. Wang
, On global bifurcation for quasilinear elliptic systems on bounded domains, Journal of Differential Equations, 246 (2009)
, 2788-2812.
doi: 10.1016/j.jde.2008.09.009.![]() ![]() ![]() |
|
R. Welch
and D. Kaiser
, Cell behavior in traveling wave patterns of myxobacteria, Proceedings of the National Academy of Sciences, 98 (2001)
, 14907-14912.
doi: 10.1073/pnas.261574598.![]() ![]() |
|
F. Yi
, J. Wei
and J. Shi
, Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system, Journal of Differential Equations, 246 (2009)
, 1944-1977.
doi: 10.1016/j.jde.2008.10.024.![]() ![]() ![]() |
Basic phase portrait of (2)
Parameter space for Turing instability. The parameter values are