October  2017, 10(5): 1175-1185. doi: 10.3934/dcdss.2017064

Global existence and energy decay estimate of solutions for a class of nonlinear higher-order wave equation with general nonlinear dissipation and source term

School of Mathematics and Statistics, Southwest University, Chongqing 400715, China

Received  September 2016 Revised  February 2017 Published  June 2017

Fund Project: This work is partially supported by the the Basic and Advanced Research Project of CQCSTC grant cstc2016jcyjA0018, NSFC grant 11201380, Fundamental Research Funds for the Central Universities grant XDJK2015A16, XDJK2016E120, Project funded by China Postdoctoral Science Foundation grant 2014M550453,2015T80948.

This paper deals with a higher-order wave equation with general nonlinear dissipation and source term
$u''+(-Δ)^mu+g(u')=b|u|^{p-2}u, $
which was studied extensively when
$m=1, 2$
and the nonlinear dissipative term
$g(u')$
is a polynomial, i.e.,
$g(u')=a|u'|^{q-2}u'$
. We obtain the global existence of solutions and show the energy decay estimate when
$m≥1$
is a positive integer and the nonlinear dissipative term
$g$
does not necessarily have a polynomial grow near the origin.
Citation: Jun Zhou. Global existence and energy decay estimate of solutions for a class of nonlinear higher-order wave equation with general nonlinear dissipation and source term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1175-1185. doi: 10.3934/dcdss.2017064
References:
[1]

M. Aassila, Global existence of solutions to a wave equation with damping and source terms, Diff. Inte. Equations, 14 (2001), 1301-1314.   Google Scholar

[2]

Q. GaoF. Li and Y. Wang, Blow up of solution for higher-order Kirchhoff-type equations with nonlinear dissipation, Cent. Euro. J. Math., 9 (2011), 686-698.  doi: 10.2478/s11533-010-0096-2.  Google Scholar

[3]

V. Georgiev and G. Todorova, Existence of a solution of the wave equation with nonlinear damping and source terms, J. Differential Equations, 109 (1994), 295-308.  doi: 10.1006/jdeq.1994.1051.  Google Scholar

[4]

R. Ikehata and T. Suzuki, Stable and unstable sets for evolution equations of parabolic and hyperbolic type, Hiroshima Math. J., 26 (1996), 475-491.   Google Scholar

[5]

R. Ikehata, Some remarks on the wave equations with nonlinear damping and source terms, Nonlinear Anal., 27 (1996), 1165-1175.  doi: 10.1016/0362-546X(95)00119-G.  Google Scholar

[6]

H. A. Levine, Instability and nonexistence of global solutions of nonlinear wave equation of the form $Du_{tt}=Au+f(u)$, Trans. Am. Math. Soc., 192 (1974), 1-21.  doi: 10.2307/1996814.  Google Scholar

[7]

H. A. Levine, Some additional remarks on the nonexistence of global solutions to nonlinear wave equations, SIAM J. Math. Anal., 5 (1974), 138-146.  doi: 10.1137/0505015.  Google Scholar

[8]

P. Martinez, A new method to obtain decay rate estimates for dissipative systems, ESAIM. Cont. Opt. Cal. Var., 4 (1999), 419-444.  doi: 10.1051/cocv:1999116.  Google Scholar

[9]

S. A. Messaoudi, Global existence and nonexistence in a system of Petrovsky, J. Math. Anal. Appl., 265 (2002), 296-308.  doi: 10.1006/jmaa.2001.7697.  Google Scholar

[10]

M. Nako, Asymptotic stability of the bounded or almost periodic solution of the wave equation with nonlinear dissipative term, J. Math. Anal. Appl., 58 (1977), 336-343.  doi: 10.1016/0022-247X(77)90211-6.  Google Scholar

[11]

K. Ono, On global solutions and blow-up solutions of nonlinear Kirchhoff strings with nonlinear dissipation, J. Math. Anal. Appl., 216 (1997), 321-342.  doi: 10.1006/jmaa.1997.5697.  Google Scholar

[12]

M. Reed and B. Simon, Methods of Modern Mathematical Physics, in: Scattering Theiry, vol Ⅲ, Academic Press, New York, London, 1979.  Google Scholar

[13]

D. H. Sattinger, On global solution of nonlinear hyperbolic equations, Arch. Rational Mech. Anal., 30 (1968), 148-172.  doi: 10.1007/BF00250942.  Google Scholar

[14]

G. Todorova, Stable and unstable sets for the Cauchy problem for a nonlinear wave equation with nonlinear damping and source terms, J. Math. Anal. Appl., 239 (1999), 213-226.  doi: 10.1006/jmaa.1999.6528.  Google Scholar

[15]

S. T. Wu and L. Y. Tsai, On global solutions and blow-up of solutions for a nonlinearly damped Petrovsky system, Taiwanese J. Math., 13 (2009), 545-558.   Google Scholar

[16]

Y. Ye, Existence and asymptotic behavior of gobal solutions for aclass of nonlinear higher-order wave equation, J. Ineq. Appl. , 2010 (2010), Art. ID 394859, 14 pp. doi: 10.1155/2010/394859.  Google Scholar

[17]

E. Zauderer, Partial Differential Equations of Applied Mathematics, in: Pure and Applied Mathematics, second edition, A Wiley-interscience Publication, Johu Wiely & Sons, Inc. , New York, 1989.  Google Scholar

[18]

J. ZhouX. R. WangX. J. Song and C. L. Mu, Global existence and blowup of solutions for a class of nonlinear higher-order wave equations, Z. Angew. Math. Phys., 63 (2012), 461-473.  doi: 10.1007/s00033-011-0165-9.  Google Scholar

show all references

References:
[1]

M. Aassila, Global existence of solutions to a wave equation with damping and source terms, Diff. Inte. Equations, 14 (2001), 1301-1314.   Google Scholar

[2]

Q. GaoF. Li and Y. Wang, Blow up of solution for higher-order Kirchhoff-type equations with nonlinear dissipation, Cent. Euro. J. Math., 9 (2011), 686-698.  doi: 10.2478/s11533-010-0096-2.  Google Scholar

[3]

V. Georgiev and G. Todorova, Existence of a solution of the wave equation with nonlinear damping and source terms, J. Differential Equations, 109 (1994), 295-308.  doi: 10.1006/jdeq.1994.1051.  Google Scholar

[4]

R. Ikehata and T. Suzuki, Stable and unstable sets for evolution equations of parabolic and hyperbolic type, Hiroshima Math. J., 26 (1996), 475-491.   Google Scholar

[5]

R. Ikehata, Some remarks on the wave equations with nonlinear damping and source terms, Nonlinear Anal., 27 (1996), 1165-1175.  doi: 10.1016/0362-546X(95)00119-G.  Google Scholar

[6]

H. A. Levine, Instability and nonexistence of global solutions of nonlinear wave equation of the form $Du_{tt}=Au+f(u)$, Trans. Am. Math. Soc., 192 (1974), 1-21.  doi: 10.2307/1996814.  Google Scholar

[7]

H. A. Levine, Some additional remarks on the nonexistence of global solutions to nonlinear wave equations, SIAM J. Math. Anal., 5 (1974), 138-146.  doi: 10.1137/0505015.  Google Scholar

[8]

P. Martinez, A new method to obtain decay rate estimates for dissipative systems, ESAIM. Cont. Opt. Cal. Var., 4 (1999), 419-444.  doi: 10.1051/cocv:1999116.  Google Scholar

[9]

S. A. Messaoudi, Global existence and nonexistence in a system of Petrovsky, J. Math. Anal. Appl., 265 (2002), 296-308.  doi: 10.1006/jmaa.2001.7697.  Google Scholar

[10]

M. Nako, Asymptotic stability of the bounded or almost periodic solution of the wave equation with nonlinear dissipative term, J. Math. Anal. Appl., 58 (1977), 336-343.  doi: 10.1016/0022-247X(77)90211-6.  Google Scholar

[11]

K. Ono, On global solutions and blow-up solutions of nonlinear Kirchhoff strings with nonlinear dissipation, J. Math. Anal. Appl., 216 (1997), 321-342.  doi: 10.1006/jmaa.1997.5697.  Google Scholar

[12]

M. Reed and B. Simon, Methods of Modern Mathematical Physics, in: Scattering Theiry, vol Ⅲ, Academic Press, New York, London, 1979.  Google Scholar

[13]

D. H. Sattinger, On global solution of nonlinear hyperbolic equations, Arch. Rational Mech. Anal., 30 (1968), 148-172.  doi: 10.1007/BF00250942.  Google Scholar

[14]

G. Todorova, Stable and unstable sets for the Cauchy problem for a nonlinear wave equation with nonlinear damping and source terms, J. Math. Anal. Appl., 239 (1999), 213-226.  doi: 10.1006/jmaa.1999.6528.  Google Scholar

[15]

S. T. Wu and L. Y. Tsai, On global solutions and blow-up of solutions for a nonlinearly damped Petrovsky system, Taiwanese J. Math., 13 (2009), 545-558.   Google Scholar

[16]

Y. Ye, Existence and asymptotic behavior of gobal solutions for aclass of nonlinear higher-order wave equation, J. Ineq. Appl. , 2010 (2010), Art. ID 394859, 14 pp. doi: 10.1155/2010/394859.  Google Scholar

[17]

E. Zauderer, Partial Differential Equations of Applied Mathematics, in: Pure and Applied Mathematics, second edition, A Wiley-interscience Publication, Johu Wiely & Sons, Inc. , New York, 1989.  Google Scholar

[18]

J. ZhouX. R. WangX. J. Song and C. L. Mu, Global existence and blowup of solutions for a class of nonlinear higher-order wave equations, Z. Angew. Math. Phys., 63 (2012), 461-473.  doi: 10.1007/s00033-011-0165-9.  Google Scholar

[1]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[2]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[3]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[4]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[5]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[6]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[7]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

[8]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[9]

Honglei Lang, Yunhe Sheng. Linearization of the higher analogue of Courant algebroids. Journal of Geometric Mechanics, 2020, 12 (4) : 585-606. doi: 10.3934/jgm.2020025

[10]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[11]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[12]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[13]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020276

[14]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[15]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020264

[16]

Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080

[17]

Meng Chen, Yong Hu, Matteo Penegini. On projective threefolds of general type with small positive geometric genus. Electronic Research Archive, , () : -. doi: 10.3934/era.2020117

[18]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[19]

Haiyu Liu, Rongmin Zhu, Yuxian Geng. Gorenstein global dimensions relative to balanced pairs. Electronic Research Archive, 2020, 28 (4) : 1563-1571. doi: 10.3934/era.2020082

[20]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (59)
  • HTML views (68)
  • Cited by (0)

Other articles
by authors

[Back to Top]