This paper deals with a higher-order wave equation with general nonlinear dissipation and source term
$u''+(-Δ)^mu+g(u')=b|u|^{p-2}u, $
which was studied extensively when $m=1, 2$ and the nonlinear dissipative term $g(u')$ is a polynomial, i.e., $g(u')=a|u'|^{q-2}u'$. We obtain the global existence of solutions and show the energy decay estimate when $m≥1$ is a positive integer and the nonlinear dissipative term $g$ does not necessarily have a polynomial grow near the origin.
Citation: |
M. Aassila
, Global existence of solutions to a wave equation with damping and source terms, Diff. Inte. Equations, 14 (2001)
, 1301-1314.
![]() ![]() |
|
Q. Gao
, F. Li
and Y. Wang
, Blow up of solution for higher-order Kirchhoff-type equations with nonlinear dissipation, Cent. Euro. J. Math., 9 (2011)
, 686-698.
doi: 10.2478/s11533-010-0096-2.![]() ![]() ![]() |
|
V. Georgiev
and G. Todorova
, Existence of a solution of the wave equation with nonlinear damping and source terms, J. Differential Equations, 109 (1994)
, 295-308.
doi: 10.1006/jdeq.1994.1051.![]() ![]() ![]() |
|
R. Ikehata
and T. Suzuki
, Stable and unstable sets for evolution equations of parabolic and hyperbolic type, Hiroshima Math. J., 26 (1996)
, 475-491.
![]() ![]() |
|
R. Ikehata
, Some remarks on the wave equations with nonlinear damping and source terms, Nonlinear Anal., 27 (1996)
, 1165-1175.
doi: 10.1016/0362-546X(95)00119-G.![]() ![]() ![]() |
|
H. A. Levine
, Instability and nonexistence of global solutions of nonlinear wave equation of the form $Du_{tt}=Au+f(u)$, Trans. Am. Math. Soc., 192 (1974)
, 1-21.
doi: 10.2307/1996814.![]() ![]() ![]() |
|
H. A. Levine
, Some additional remarks on the nonexistence of global solutions to nonlinear wave equations, SIAM J. Math. Anal., 5 (1974)
, 138-146.
doi: 10.1137/0505015.![]() ![]() ![]() |
|
P. Martinez
, A new method to obtain decay rate estimates for dissipative systems, ESAIM. Cont. Opt. Cal. Var., 4 (1999)
, 419-444.
doi: 10.1051/cocv:1999116.![]() ![]() ![]() |
|
S. A. Messaoudi
, Global existence and nonexistence in a system of Petrovsky, J. Math. Anal. Appl., 265 (2002)
, 296-308.
doi: 10.1006/jmaa.2001.7697.![]() ![]() ![]() |
|
M. Nako
, Asymptotic stability of the bounded or almost periodic solution of the wave equation with nonlinear dissipative term, J. Math. Anal. Appl., 58 (1977)
, 336-343.
doi: 10.1016/0022-247X(77)90211-6.![]() ![]() ![]() |
|
K. Ono
, On global solutions and blow-up solutions of nonlinear Kirchhoff strings with nonlinear dissipation, J. Math. Anal. Appl., 216 (1997)
, 321-342.
doi: 10.1006/jmaa.1997.5697.![]() ![]() ![]() |
|
M. Reed and B. Simon,
Methods of Modern Mathematical Physics, in: Scattering Theiry, vol Ⅲ, Academic Press, New York, London, 1979.
![]() ![]() |
|
D. H. Sattinger
, On global solution of nonlinear hyperbolic equations, Arch. Rational Mech. Anal., 30 (1968)
, 148-172.
doi: 10.1007/BF00250942.![]() ![]() ![]() |
|
G. Todorova
, Stable and unstable sets for the Cauchy problem for a nonlinear wave equation with nonlinear damping and source terms, J. Math. Anal. Appl., 239 (1999)
, 213-226.
doi: 10.1006/jmaa.1999.6528.![]() ![]() ![]() |
|
S. T. Wu
and L. Y. Tsai
, On global solutions and blow-up of solutions for a nonlinearly damped Petrovsky system, Taiwanese J. Math., 13 (2009)
, 545-558.
![]() ![]() |
|
Y. Ye, Existence and asymptotic behavior of gobal solutions for aclass of nonlinear higher-order wave equation, J. Ineq. Appl. , 2010 (2010), Art. ID 394859, 14 pp.
doi: 10.1155/2010/394859.![]() ![]() ![]() |
|
E. Zauderer,
Partial Differential Equations of Applied Mathematics, in: Pure and Applied Mathematics, second edition, A Wiley-interscience Publication, Johu Wiely & Sons, Inc. , New York, 1989.
![]() ![]() |
|
J. Zhou
, X. R. Wang
, X. J. Song
and C. L. Mu
, Global existence and blowup of solutions for a class of nonlinear higher-order wave equations, Z. Angew. Math. Phys., 63 (2012)
, 461-473.
doi: 10.1007/s00033-011-0165-9.![]() ![]() ![]() |