This paper deals with a higher-order wave equation with general nonlinear dissipation and source term
$u''+(-Δ)^mu+g(u')=b|u|^{p-2}u, $
which was studied extensively when $m=1, 2$ and the nonlinear dissipative term $g(u')$ is a polynomial, i.e., $g(u')=a|u'|^{q-2}u'$. We obtain the global existence of solutions and show the energy decay estimate when $m≥1$ is a positive integer and the nonlinear dissipative term $g$ does not necessarily have a polynomial grow near the origin.
Citation: |
M. Aassila , Global existence of solutions to a wave equation with damping and source terms, Diff. Inte. Equations, 14 (2001) , 1301-1314. | |
Q. Gao , F. Li and Y. Wang , Blow up of solution for higher-order Kirchhoff-type equations with nonlinear dissipation, Cent. Euro. J. Math., 9 (2011) , 686-698. doi: 10.2478/s11533-010-0096-2. | |
V. Georgiev and G. Todorova , Existence of a solution of the wave equation with nonlinear damping and source terms, J. Differential Equations, 109 (1994) , 295-308. doi: 10.1006/jdeq.1994.1051. | |
R. Ikehata and T. Suzuki , Stable and unstable sets for evolution equations of parabolic and hyperbolic type, Hiroshima Math. J., 26 (1996) , 475-491. | |
R. Ikehata , Some remarks on the wave equations with nonlinear damping and source terms, Nonlinear Anal., 27 (1996) , 1165-1175. doi: 10.1016/0362-546X(95)00119-G. | |
H. A. Levine , Instability and nonexistence of global solutions of nonlinear wave equation of the form $Du_{tt}=Au+f(u)$, Trans. Am. Math. Soc., 192 (1974) , 1-21. doi: 10.2307/1996814. | |
H. A. Levine , Some additional remarks on the nonexistence of global solutions to nonlinear wave equations, SIAM J. Math. Anal., 5 (1974) , 138-146. doi: 10.1137/0505015. | |
P. Martinez , A new method to obtain decay rate estimates for dissipative systems, ESAIM. Cont. Opt. Cal. Var., 4 (1999) , 419-444. doi: 10.1051/cocv:1999116. | |
S. A. Messaoudi , Global existence and nonexistence in a system of Petrovsky, J. Math. Anal. Appl., 265 (2002) , 296-308. doi: 10.1006/jmaa.2001.7697. | |
M. Nako , Asymptotic stability of the bounded or almost periodic solution of the wave equation with nonlinear dissipative term, J. Math. Anal. Appl., 58 (1977) , 336-343. doi: 10.1016/0022-247X(77)90211-6. | |
K. Ono , On global solutions and blow-up solutions of nonlinear Kirchhoff strings with nonlinear dissipation, J. Math. Anal. Appl., 216 (1997) , 321-342. doi: 10.1006/jmaa.1997.5697. | |
M. Reed and B. Simon, Methods of Modern Mathematical Physics, in: Scattering Theiry, vol Ⅲ, Academic Press, New York, London, 1979. | |
D. H. Sattinger , On global solution of nonlinear hyperbolic equations, Arch. Rational Mech. Anal., 30 (1968) , 148-172. doi: 10.1007/BF00250942. | |
G. Todorova , Stable and unstable sets for the Cauchy problem for a nonlinear wave equation with nonlinear damping and source terms, J. Math. Anal. Appl., 239 (1999) , 213-226. doi: 10.1006/jmaa.1999.6528. | |
S. T. Wu and L. Y. Tsai , On global solutions and blow-up of solutions for a nonlinearly damped Petrovsky system, Taiwanese J. Math., 13 (2009) , 545-558. | |
Y. Ye, Existence and asymptotic behavior of gobal solutions for aclass of nonlinear higher-order wave equation, J. Ineq. Appl. , 2010 (2010), Art. ID 394859, 14 pp. doi: 10.1155/2010/394859. | |
E. Zauderer, Partial Differential Equations of Applied Mathematics, in: Pure and Applied Mathematics, second edition, A Wiley-interscience Publication, Johu Wiely & Sons, Inc. , New York, 1989. | |
J. Zhou , X. R. Wang , X. J. Song and C. L. Mu , Global existence and blowup of solutions for a class of nonlinear higher-order wave equations, Z. Angew. Math. Phys., 63 (2012) , 461-473. doi: 10.1007/s00033-011-0165-9. |