\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Global existence and energy decay estimate of solutions for a class of nonlinear higher-order wave equation with general nonlinear dissipation and source term

This work is partially supported by the the Basic and Advanced Research Project of CQCSTC grant cstc2016jcyjA0018, NSFC grant 11201380, Fundamental Research Funds for the Central Universities grant XDJK2015A16, XDJK2016E120, Project funded by China Postdoctoral Science Foundation grant 2014M550453,2015T80948

Abstract / Introduction Full Text(HTML) Related Papers Cited by
  • This paper deals with a higher-order wave equation with general nonlinear dissipation and source term

    $u''+(-Δ)^mu+g(u')=b|u|^{p-2}u, $

    which was studied extensively when $m=1, 2$ and the nonlinear dissipative term $g(u')$ is a polynomial, i.e., $g(u')=a|u'|^{q-2}u'$. We obtain the global existence of solutions and show the energy decay estimate when $m≥1$ is a positive integer and the nonlinear dissipative term $g$ does not necessarily have a polynomial grow near the origin.

    Mathematics Subject Classification: Primary: 35L20, 35L70; Secondary: 58G16.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  •   M. Aassila , Global existence of solutions to a wave equation with damping and source terms, Diff. Inte. Equations, 14 (2001) , 1301-1314. 
      Q. Gao , F. Li  and  Y. Wang , Blow up of solution for higher-order Kirchhoff-type equations with nonlinear dissipation, Cent. Euro. J. Math., 9 (2011) , 686-698.  doi: 10.2478/s11533-010-0096-2.
      V. Georgiev  and  G. Todorova , Existence of a solution of the wave equation with nonlinear damping and source terms, J. Differential Equations, 109 (1994) , 295-308.  doi: 10.1006/jdeq.1994.1051.
      R. Ikehata  and  T. Suzuki , Stable and unstable sets for evolution equations of parabolic and hyperbolic type, Hiroshima Math. J., 26 (1996) , 475-491. 
      R. Ikehata , Some remarks on the wave equations with nonlinear damping and source terms, Nonlinear Anal., 27 (1996) , 1165-1175.  doi: 10.1016/0362-546X(95)00119-G.
      H. A. Levine , Instability and nonexistence of global solutions of nonlinear wave equation of the form $Du_{tt}=Au+f(u)$, Trans. Am. Math. Soc., 192 (1974) , 1-21.  doi: 10.2307/1996814.
      H. A. Levine , Some additional remarks on the nonexistence of global solutions to nonlinear wave equations, SIAM J. Math. Anal., 5 (1974) , 138-146.  doi: 10.1137/0505015.
      P. Martinez , A new method to obtain decay rate estimates for dissipative systems, ESAIM. Cont. Opt. Cal. Var., 4 (1999) , 419-444.  doi: 10.1051/cocv:1999116.
      S. A. Messaoudi , Global existence and nonexistence in a system of Petrovsky, J. Math. Anal. Appl., 265 (2002) , 296-308.  doi: 10.1006/jmaa.2001.7697.
      M. Nako , Asymptotic stability of the bounded or almost periodic solution of the wave equation with nonlinear dissipative term, J. Math. Anal. Appl., 58 (1977) , 336-343.  doi: 10.1016/0022-247X(77)90211-6.
      K. Ono , On global solutions and blow-up solutions of nonlinear Kirchhoff strings with nonlinear dissipation, J. Math. Anal. Appl., 216 (1997) , 321-342.  doi: 10.1006/jmaa.1997.5697.
      M. Reed and B. Simon, Methods of Modern Mathematical Physics, in: Scattering Theiry, vol Ⅲ, Academic Press, New York, London, 1979.
      D. H. Sattinger , On global solution of nonlinear hyperbolic equations, Arch. Rational Mech. Anal., 30 (1968) , 148-172.  doi: 10.1007/BF00250942.
      G. Todorova , Stable and unstable sets for the Cauchy problem for a nonlinear wave equation with nonlinear damping and source terms, J. Math. Anal. Appl., 239 (1999) , 213-226.  doi: 10.1006/jmaa.1999.6528.
      S. T. Wu  and  L. Y. Tsai , On global solutions and blow-up of solutions for a nonlinearly damped Petrovsky system, Taiwanese J. Math., 13 (2009) , 545-558. 
      Y. Ye, Existence and asymptotic behavior of gobal solutions for aclass of nonlinear higher-order wave equation, J. Ineq. Appl. , 2010 (2010), Art. ID 394859, 14 pp. doi: 10.1155/2010/394859.
      E. Zauderer, Partial Differential Equations of Applied Mathematics, in: Pure and Applied Mathematics, second edition, A Wiley-interscience Publication, Johu Wiely & Sons, Inc. , New York, 1989.
      J. Zhou , X. R. Wang , X. J. Song  and  C. L. Mu , Global existence and blowup of solutions for a class of nonlinear higher-order wave equations, Z. Angew. Math. Phys., 63 (2012) , 461-473.  doi: 10.1007/s00033-011-0165-9.
  • 加载中
SHARE

Article Metrics

HTML views(1734) PDF downloads(197) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return