We consider non-dissipative (elastic) rate-type material models that are derived within the Gibbs-potential-based thermodynamic framework. Since the absence of any dissipative mechanism in the model prevents us from establishing even a local-in-time existence result in two spatial dimensions for a spatially periodic problem, we propose two regularisations. For such regularized problems we obtain well-posedness of the planar, spatially periodic problem. In contrast with existing results, we prove ours for a regularizing term present solely in the evolution equation for the stress.
Citation: |
R. Adams and J. Fournier,
Sobolev Spaces, volume 140 of Pure and Applied Mathematics (Amsterdam), Elsevier/Academic Press, Amsterdam, second edition, 2003.
![]() ![]() |
|
J. W. Barrett, Y. Lu and E. Süli, Existence of large-data finite-energy global weak solutions to a compressible Oldroyd-B model, Communications in Mathematical Sciences (Accepted, 22 January 2017), Available from: arXiv: 1608.04229, 2016.
![]() |
|
J. W. Barrett
and S. Boyaval
, Existence and approximation of a (regularized) Oldroyd-B model, Mathematical Models and Methods in Applied Sciences, 21 (2011)
, 1783-1837.
doi: 10.1142/S0218202511005581.![]() ![]() ![]() |
|
J. W. Barrett
and E. Süli
, Existence and equilibration of global weak solutions to kinetic models for dilute polymers Ⅰ: Finitely extensible nonlinear bead-spring chains, Mathematical Models and Methods in Applied Sciences, 21 (2011)
, 1211-1289.
doi: 10.1142/S0218202511005313.![]() ![]() ![]() |
|
O. Bejaoui
and M. Majdoub
, Global weak solutions for some Oldroyd models, Journal of Differential Equations, 254 (2013)
, 660-685.
doi: 10.1016/j.jde.2012.09.010.![]() ![]() ![]() |
|
H. Brezis
and T. Gallouet
, Nonlinear Schrödinger evolution equations, Nonlinear Analysis: Theory, Methods & Applications, 4 (1980)
, 677-681.
doi: 10.1016/0362-546X(80)90068-1.![]() ![]() ![]() |
|
H. Brezis
and S. Wainger
, A note on limiting cases of Sobolev embeddings and convolution inequalities, Communications in Partial Differential Equations, 5 (1980)
, 773-789.
doi: 10.1080/03605308008820154.![]() ![]() ![]() |
|
J. Chemin
and N. Masmoudi
, About lifespan of regular solutions of equations related to viscoelastic fluids, SIAM Journal on Mathematical Analysis, 33 (2001)
, 84-112.
doi: 10.1137/S0036141099359317.![]() ![]() ![]() |
|
E. Chiodaroli
, E. Feireisl
and O. Kreml
, On the weak solutions to the equations of a compressible heat conducting gas, Ann. Inst. H. Poincaré Anal. Non Linéaire, 32 (2015)
, 225-243.
doi: 10.1016/j.anihpc.2013.11.005.![]() ![]() ![]() |
|
L. Chupin
and S. Martin
, Stationary Oldroyd model with diffusive stress: Mathematical analysis of the model and vanishing diffusion process, Journal of Non-Newtonian Fluid Mechanics, 218 (2015)
, 27-39.
doi: 10.1016/j.jnnfm.2015.01.004.![]() ![]() ![]() |
|
P. Constantin
and M. Kliegl
, Note on global regularity for two-dimensional Oldroyd-B fluids with diffusive stress, Archive for Rational Mechanics and Analysis, 206 (2012)
, 725-740.
doi: 10.1007/s00205-012-0537-0.![]() ![]() ![]() |
|
De Lellis
, Székelyhidi
and Jr.
, On admissibility criteria for weak solutions of the Euler equations, Arch. Ration. Mech. Anal., 195 (2010)
, 225-260.
doi: 10.1007/s00205-008-0201-x.![]() ![]() ![]() |
|
De Lellis
, Székelyhidi
and Jr.
, Dissipative continuous Euler flows, Invent. Math., 193 (2013)
, 377-407.
doi: 10.1007/s00222-012-0429-9.![]() ![]() ![]() |
|
T. M. Elgindi
and J. Liu
, Global wellposedness to the generalized oldroyd type models in R3, Journal of Differential Equations, 259 (2015)
, 1958-1966.
doi: 10.1016/j.jde.2015.03.026.![]() ![]() |
|
T. M. Elgindi
and F. Rousset
, Global regularity for some oldroyd-b type models, Communications on Pure and Applied Mathematics, 68 (2015)
, 2005-2021.
doi: 10.1002/cpa.21563.![]() ![]() |
|
D. Fang
and R. Zi
, Strong solutions of 3d compressible Oldroyd-B fluids, Mathematical Methods in the Applied Sciences, 36 (2013)
, 1423-1439.
doi: 10.1002/mma.2695.![]() ![]() ![]() |
|
E. Fernández-Cara, F. Guillén and R. R. Ortega, Mathematical modeling and analysis of viscoelastic fluids of the Oldroyd kind, in Handbook of Numerical Analysis, Handbook of Numerical Analysis, 8, Elsevier, 2002,543-660. 2pt
![]() ![]() |
|
C. Foias, O. Manley, R. Rosa and R. Temam,
Navier-Stokes Equations and Turbulence, Cambridge University Press, 2001.
doi: 10.1017/CBO9780511546754.![]() ![]() ![]() |
|
C. Guillopé
and J. C. Saut
, Existence results for the flow of viscoelastic fluids with a differential constitutive law, Nonlinear Anal., 15 (1990)
, 849-869.
doi: 10.1016/0362-546X(90)90097-Z.![]() ![]() ![]() |
|
N. Gunther
, On the motion of fluid in a moving container. izvestia akademia nauk ussr, Seriya Fizicheskaya-Mathematica, 20 (1927)
, 1323-1348,1503-1532.
![]() |
|
T. Kato
, On classical solutions of the two-dimensional non-stationary Euler equation, Archive for Rational Mechanics and Analysis, 25 (1967)
, 188-200.
doi: 10.1007/BF00251588.![]() ![]() ![]() |
|
H. Kozono
, T. Ogawa
and Y. Taniuchi
, The critical Sobolev inequalities in Besov spaces and regularity criterion to some semi-linear evolution equations, Mathematische Zeitschrift, 242 (2002)
, 251-278.
doi: 10.1007/s002090100332.![]() ![]() ![]() |
|
H. Kozono
and Y. Taniuchi
, Limiting case of the Sobolev inequality in BMO, with application to the Euler equations, Communications in Mathematical Physics, 214 (2000)
, 191-200.
doi: 10.1007/s002200000267.![]() ![]() ![]() |
|
J. Kratochvíl
, J. Málek
and P. Minakowski
, A Gibbs-potential-based framework for ideal plasticity of crystalline solids treated as a material flow through an adjustable crystal lattice space and its application to three-dimensional micropillar compression, International Journal of Plasticity, 87 (2016)
, 114-129.
doi: 10.1016/j.ijplas.2016.09.006.![]() ![]() |
|
Z. Lei
, Global existence of classical solutions for some Oldroyd-B model via the incompressible limit, Chinese Annals of Mathematics, Series B, 27 (2006)
, 565-580.
doi: 10.1007/s11401-005-0041-z.![]() ![]() ![]() |
|
Z. Lei
, Ch. Liu
and Y. Zhou
, Global solutions for incompressible viscoelastic fluids, Archive for Rational Mechanics and Analysis, 188 (2008)
, 371-398.
doi: 10.1007/s00205-007-0089-x.![]() ![]() ![]() |
|
L. Lichtenstein
, Über einige Existenzprobleme der Hydrodynamik homogener, unzusammendrickbarer, reibungsloser Flüssigkeiten und die Helmholtzschen Wirbelsatze, Mathematische Zeitschrift, 23 (1925)
, 89-154.
doi: 10.1007/BF01506223.![]() ![]() ![]() |
|
F.-H. Lin
, Ch. Liu
and P. Zhang
, On hydrodynamics of viscoelastic fluids, Communications on Pure and Applied Mathematics, 58 (2005)
, 1437-1471.
doi: 10.1002/cpa.20074.![]() ![]() ![]() |
|
P. L. Lions
and N. Masmoudi
, Global solutions for some Oldroyd models of non-Newtonian flows, Chinese Annals of Mathematics. Series B, 21 (2000)
, 131-146.
doi: 10.1142/S0252959900000170.![]() ![]() ![]() |
|
M. Lukáčová-Medvid'ová
, H. Mizerová
and Š. Nečasová
, Global existence and uniqueness result for the diffusive Peterlin viscoelastic model, Nonlinear Analysis: Theory, Methods & Applications, 120 (2015)
, 154-170.
doi: 10.1016/j.na.2015.03.001.![]() ![]() ![]() |
|
J. Málek, J. Nečas, M. Rokyta and M. Rȯžička,
Weak and Measure-Valued Solutions to Evolutionary PDEs, volume 13 of Applied Mathematics and Mathematical Computation, Chapman and Hall, London, 1996.
doi: 10.1007/978-1-4899-6824-1.![]() ![]() ![]() |
|
J. Málek and K. R. Rajagopal, Chapter 5 -mathematical issues concerning the Navier-Stokes equations and some of its generalizations, in Handbook of Differential Equations Evolutionary Equations (eds. C. M. Dafermos and E. Feireisl), Handbook of Differential Equations: Evolutionary Equations, 2, North-Holland, 2005,371-459. 2pt
![]() |
|
C. Marchioro and M. Pulvirenti,
Mathematical Theory of Incompressible Non-Viscous Fluids, Applied Mathematical Sciences, 96, Springer-Verlag, New York, 1994.
doi: 10.1007/978-1-4612-4284-0.![]() ![]() ![]() |
|
K. R. Rajagopal
, The elasticity of elasticity, Z. Angew. Math. Phys., 58 (2007)
, 309-317.
doi: 10.1007/s00033-006-6084-5.![]() ![]() ![]() |
|
K. R. Rajagopal
, On a new class of models in elasticity, Math. Comput. Appl., 15 (2010)
, 506-528.
![]() ![]() |
|
K. R. Rajagopal
, Conspectus of concepts of elasticity, Math. Mech. Solids, 16 (2011)
, 536-562.
doi: 10.1177/1081286510387856.![]() ![]() ![]() |
|
K. R. Rajagopal
and A. R. Srinivasa
, On a class of non-dissipative materials that are not hyperelastic, Royal Society of London Proceedings Series A, 465 (2009)
, 493-500.
doi: 10.1098/rspa.2008.0319.![]() ![]() ![]() |
|
K. R. Rajagopal
and A. R. Srinivasa
, A Gibbs-potential-based formulation for obtaining the response functions for a class of viscoelastic materials, Proc. R. Soc. A, 467 (2011)
, 39-58.
doi: 10.1098/rspa.2010.0136.![]() ![]() ![]() |
|
J. Simon
, Compact sets in the space Lp (0, t; B), Ann. Mat. Pura Appl., 146 (1987)
, 65-96.
doi: 10.1007/BF01762360.![]() ![]() ![]() |
|
E. M. Stein,
Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series 30, Princeton University Press, 1970.
![]() ![]() |
|
R. Sureshkumar
and A. N. Beris
, Effect of artificial stress diffusivity on the stability of numerical calculations and the flow dynamics of time-dependent viscoelastic flows, Journal of Non-Newtonian Fluid Mechanics, 60 (1995)
, 53-80.
doi: 10.1016/0377-0257(95)01377-8.![]() ![]() |
|
C. A. Truesdell
, Hypo-elasticity, J. Ration. Mech. Anal., 4 (1955)
, 83-133.
![]() ![]() |
|
E. Wiedemann
, Existence of weak solutions for the incompressible Euler equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 28 (2011)
, 727-730.
doi: 10.1016/j.anihpc.2011.05.002.![]() ![]() ![]() |
|
W. Wolibner
, Un théoréme sur l'existence du mouvement plan d'un fluide parfait, homogene, incompressible, pendant un temps infiniment long, Mathematische Zeitschrift, 37 (1933)
, 698-726.
doi: 10.1007/BF01474610.![]() ![]() ![]() |