American Institute of Mathematical Sciences

December  2017, 10(6): 1281-1301. doi: 10.3934/dcdss.2017069

Shape optimization for Stokes problem with threshold slip boundary conditions

 1 Department of Numerical Mathematics, Faculty of Mathematics and Physics, Charles University, Sokolovská 83,186 75 Prague 8, Czech Republic 2 Faculty of Information Technology, University of Jyvaskyla, P.O. Box 35 (Agora), FIN-40014 Jyvaskyla, Finland 3 Department of Nanotechnology and Informatics, Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2,461 17 Liberec 1, Czech Republic

* Corresponding author

This paper is dedicated to Prof. Tomáš Roubíček in the occasion of his 60th birthday.

Received  July 2016 Revised  October 2016 Published  June 2017

Fund Project: The first author acknowledges the support of the project 17-01747S of the Czech Science Foundation. The second author was suppported by the Academy of Finland, grant #260076. The third author was supported by the Ministry of Education, Youth and Sports under the projects LM2015084 and LO1201 in the framework of the targeted support of the Large Infrastructures and of National Programme for Sustainability Ⅰ.

This paper deals with shape optimization of systems governed by the Stokes flow with threshold slip boundary conditions. The stability of solutions to the state problem with respect to a class of domains is studied. For computational purposes the slip term and impermeability condition are handled by a regularization. To get a finite dimensional optimization problem, the optimized part of the boundary is described by Bézier polynomials. Numerical examples illustrate the computational efficiency.

Citation: Jaroslav Haslinger, Raino A. E. Mäkinen, Jan Stebel. Shape optimization for Stokes problem with threshold slip boundary conditions. Discrete and Continuous Dynamical Systems - S, 2017, 10 (6) : 1281-1301. doi: 10.3934/dcdss.2017069
References:
 [1] D. Arnold, F. Brezzi and M. Fortin, A stable finite element for the Stokes equations, Calcolo, 21 (1984), 337-344.  doi: 10.1007/BF02576171. [2] D. Bucur, E. Feireisl and Š. Nečasová, Influence of wall roughness on the slip behavior of viscous fluids, Proc. R. Soc. Edinb., Sect. A, Math., 138 (2008), 957-973.  doi: 10.1017/S0308210507000376. [3] M. Bulíček and J. Málek On unsteady internal flows of Bingham fluids subject to threshold slip on the impermeable boundary, in Recent Developments of Mathematical Fluid Mechanics (eds. H. Amann et al. ), Birkhäuser, 2016,135-156. [4] D. Chenais, On the existence of a solution in a domain identification problem, J. Math. Anal. Appl, 52 (1975), 189-219.  doi: 10.1016/0022-247X(75)90091-8. [5] G. Farin, Curves and Surfaces for CAGD (Fifth Edition), Morgan Kaufmann, 2002. [6] H. Fujita, A mathematical analysis of motions of viscous incompressible fluid under leak and or slip boundary conditions, Res. Inst. Math. Sci. Kokyuroku, 888 (1994), 199-216. [7] G. P. Galdi, Introduction to the Mathematical Theory of the Navier-Stokes Equations. Volume Ⅰ: Linearised Steady Problems, vol. 38 of Springer Tracts in Natural Philosophy, Springer, New York, 1994. doi: 10.1007/978-1-4612-5364-8. [8] V. Girault and P. A. Raviart, Finite Element Approximation of the Navier–Stokes Equations, vol. 749 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, Heidelberg, New York, 1979. [9] R. Glowinski, Numerical Methods for Nonlinear Variational Problems, Springer Series in Computational Physics, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1984. doi: 10.1007/978-3-662-12613-4. [10] A. Griewank and A. Walther, Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation, 2nd edition, Society for Industrial and Applied Mathematics, Philadelphia, PA, 2008. doi: 10.1137/1.9780898717761. [11] J. Haslinger, A note on contact shape optimization with semicoercive state problems, Appl. Math., 47 (2002), 397-410.  doi: 10.1023/A:1021709907750. [12] J. Haslinger and R. A. E. Mäkinen, Introduction to Shape Optimization: Theory, Approximation, and Computation, Society for Industrial and Applied Mathematics, Philadelphia, PA, 2003. doi: 10.1137/1.9780898718690. [13] J. Haslinger and J. Stebel, Stokes problem with a solution dependent slip bound: Stability of solutions with respect to domains, ZAMM Z. Angew. Math. Mech., 96 (2016), 1049-1060.  doi: 10.1002/zamm.201500117. [14] J. Haslinger, J. Stebel and T. Sassi, Shape optimization for Stokes problem with threshold slip, Applications of Mathematics, 59 (2014), 631-652.  doi: 10.1007/s10492-014-0077-z. [15] H. Hervet and L. Léger, Flow with slip at the wall: From simple to complex fluids, C. R. Physique, 4 (2003), 241-249.  doi: 10.1016/S1631-0705(03)00047-1. [16] L. Holzleitner, Hausdorff convergence of domains and their boundaries in shape optimal design, Control Cybernet., 30 (2001), 23-44. [17] C. Le Roux, Steady Stokes flows with threshold slip boundary conditions, Math. Models Methods Appl. Sci., 15 (2005), 1141-1168.  doi: 10.1142/S0218202505000686. [18] C. Le Roux and A. Tani, Steady solutions of the Navier-Stokes equations with threshold slip boundary conditions, Math. Methods Appl. Sci., 30 (2007), 595-624.  doi: 10.1002/mma.802. [19] MATLAB, Release R2014a with Optimization Toolbox 7.0, The MathWorks Inc. , Natick, Massachusetts, 2014. [20] C. L. Navier, Mémoire sur les lois du movement des fluids, Mem. Acad. R. Sci. Paris, 6 (1823), 389-416. [21] J. Outrata, M. Kočvara and J. Zowe, Nonsmooth Approach to Optimization Problems with Equilibrium Constraints, vol. 28 of Nonconvex Optimization and its Applications, Kluwer Academic Publishers, Dordrecht, Boston, London, 1998. doi: 10.1007/978-1-4757-2825-5. [22] O. Pironneau, Optimal Shape Design for Elliptic Systems, Springer Series in Computations Physics, Springer Verlag, New York, 1984. doi: 10.1007/978-3-642-87722-3. [23] I. J. Rao and K. R. Rajagopal, The effect of the slip boundary condition on the flow of fluids in a channel, Acta Mechanica, 135 (1999), 113-126.  doi: 10.1007/BF01305747. [24] J. P. Rothstein, Slip on superhydrophobic surfaces, Annual Review of Fluid Mechanics, 42 (2010), 89-109.  doi: 10.1146/annurev-fluid-121108-145558. [25] N. Saito, On the Stokes equation with the leak and slip boundary conditions of friction type: regularity of solutions, Publ. Res. Inst. Math. Sci., 40 (2004), 345-383.  doi: 10.2977/prims/1145475807. [26] J. Stebel, On shape stability of incompressible fluids subject to Navier's slip condition, Journal of Mathematical Fluid mechanics, 14 (2012), 575-589.  doi: 10.1007/s00021-011-0086-6.

show all references

This paper is dedicated to Prof. Tomáš Roubíček in the occasion of his 60th birthday.

References:
 [1] D. Arnold, F. Brezzi and M. Fortin, A stable finite element for the Stokes equations, Calcolo, 21 (1984), 337-344.  doi: 10.1007/BF02576171. [2] D. Bucur, E. Feireisl and Š. Nečasová, Influence of wall roughness on the slip behavior of viscous fluids, Proc. R. Soc. Edinb., Sect. A, Math., 138 (2008), 957-973.  doi: 10.1017/S0308210507000376. [3] M. Bulíček and J. Málek On unsteady internal flows of Bingham fluids subject to threshold slip on the impermeable boundary, in Recent Developments of Mathematical Fluid Mechanics (eds. H. Amann et al. ), Birkhäuser, 2016,135-156. [4] D. Chenais, On the existence of a solution in a domain identification problem, J. Math. Anal. Appl, 52 (1975), 189-219.  doi: 10.1016/0022-247X(75)90091-8. [5] G. Farin, Curves and Surfaces for CAGD (Fifth Edition), Morgan Kaufmann, 2002. [6] H. Fujita, A mathematical analysis of motions of viscous incompressible fluid under leak and or slip boundary conditions, Res. Inst. Math. Sci. Kokyuroku, 888 (1994), 199-216. [7] G. P. Galdi, Introduction to the Mathematical Theory of the Navier-Stokes Equations. Volume Ⅰ: Linearised Steady Problems, vol. 38 of Springer Tracts in Natural Philosophy, Springer, New York, 1994. doi: 10.1007/978-1-4612-5364-8. [8] V. Girault and P. A. Raviart, Finite Element Approximation of the Navier–Stokes Equations, vol. 749 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, Heidelberg, New York, 1979. [9] R. Glowinski, Numerical Methods for Nonlinear Variational Problems, Springer Series in Computational Physics, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1984. doi: 10.1007/978-3-662-12613-4. [10] A. Griewank and A. Walther, Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation, 2nd edition, Society for Industrial and Applied Mathematics, Philadelphia, PA, 2008. doi: 10.1137/1.9780898717761. [11] J. Haslinger, A note on contact shape optimization with semicoercive state problems, Appl. Math., 47 (2002), 397-410.  doi: 10.1023/A:1021709907750. [12] J. Haslinger and R. A. E. Mäkinen, Introduction to Shape Optimization: Theory, Approximation, and Computation, Society for Industrial and Applied Mathematics, Philadelphia, PA, 2003. doi: 10.1137/1.9780898718690. [13] J. Haslinger and J. Stebel, Stokes problem with a solution dependent slip bound: Stability of solutions with respect to domains, ZAMM Z. Angew. Math. Mech., 96 (2016), 1049-1060.  doi: 10.1002/zamm.201500117. [14] J. Haslinger, J. Stebel and T. Sassi, Shape optimization for Stokes problem with threshold slip, Applications of Mathematics, 59 (2014), 631-652.  doi: 10.1007/s10492-014-0077-z. [15] H. Hervet and L. Léger, Flow with slip at the wall: From simple to complex fluids, C. R. Physique, 4 (2003), 241-249.  doi: 10.1016/S1631-0705(03)00047-1. [16] L. Holzleitner, Hausdorff convergence of domains and their boundaries in shape optimal design, Control Cybernet., 30 (2001), 23-44. [17] C. Le Roux, Steady Stokes flows with threshold slip boundary conditions, Math. Models Methods Appl. Sci., 15 (2005), 1141-1168.  doi: 10.1142/S0218202505000686. [18] C. Le Roux and A. Tani, Steady solutions of the Navier-Stokes equations with threshold slip boundary conditions, Math. Methods Appl. Sci., 30 (2007), 595-624.  doi: 10.1002/mma.802. [19] MATLAB, Release R2014a with Optimization Toolbox 7.0, The MathWorks Inc. , Natick, Massachusetts, 2014. [20] C. L. Navier, Mémoire sur les lois du movement des fluids, Mem. Acad. R. Sci. Paris, 6 (1823), 389-416. [21] J. Outrata, M. Kočvara and J. Zowe, Nonsmooth Approach to Optimization Problems with Equilibrium Constraints, vol. 28 of Nonconvex Optimization and its Applications, Kluwer Academic Publishers, Dordrecht, Boston, London, 1998. doi: 10.1007/978-1-4757-2825-5. [22] O. Pironneau, Optimal Shape Design for Elliptic Systems, Springer Series in Computations Physics, Springer Verlag, New York, 1984. doi: 10.1007/978-3-642-87722-3. [23] I. J. Rao and K. R. Rajagopal, The effect of the slip boundary condition on the flow of fluids in a channel, Acta Mechanica, 135 (1999), 113-126.  doi: 10.1007/BF01305747. [24] J. P. Rothstein, Slip on superhydrophobic surfaces, Annual Review of Fluid Mechanics, 42 (2010), 89-109.  doi: 10.1146/annurev-fluid-121108-145558. [25] N. Saito, On the Stokes equation with the leak and slip boundary conditions of friction type: regularity of solutions, Publ. Res. Inst. Math. Sci., 40 (2004), 345-383.  doi: 10.2977/prims/1145475807. [26] J. Stebel, On shape stability of incompressible fluids subject to Navier's slip condition, Journal of Mathematical Fluid mechanics, 14 (2012), 575-589.  doi: 10.1007/s00021-011-0086-6.
Left: reference triangulation $\widehat{\cal T_h}$. Right: Mapped triangulation $\cal T_h$.
Optimized shapes (left) and convergence histories (right) for different values of the penalty/smoothing parameter $\varepsilon$.
Streamlines (left) and pressure contours (right) for $\varepsilon=10^{-5}$.
Tangential velocity and shear stress for $\varepsilon=10^{-5}$
Streamlines (left) and pressure contours (right)
Tangential velocity and shear stress
Optimized Bézier functions $\alpha_m$ for two different values of $\sigma_1$
Contours of the target pressure $p_0$ (left) and computed pressure (right)
Tangential velocity and shear stress on $S(\alpha_{opt})$
 [1] Gianmarco Manzini, Annamaria Mazzia. A virtual element generalization on polygonal meshes of the Scott-Vogelius finite element method for the 2-D Stokes problem. Journal of Computational Dynamics, 2022, 9 (2) : 207-238. doi: 10.3934/jcd.2021020 [2] Lekbir Afraites, Chorouk Masnaoui, Mourad Nachaoui. Shape optimization method for an inverse geometric source problem and stability at critical shape. Discrete and Continuous Dynamical Systems - S, 2022, 15 (1) : 1-21. doi: 10.3934/dcdss.2021006 [3] Yinnian He, Yanping Lin, Weiwei Sun. Stabilized finite element method for the non-stationary Navier-Stokes problem. Discrete and Continuous Dynamical Systems - B, 2006, 6 (1) : 41-68. doi: 10.3934/dcdsb.2006.6.41 [4] Ying Liu, Yanping Chen, Yunqing Huang, Yang Wang. Two-grid method for semiconductor device problem by mixed finite element method and characteristics finite element method. Electronic Research Archive, 2021, 29 (1) : 1859-1880. doi: 10.3934/era.2020095 [5] John Sebastian Simon, Hirofumi Notsu. A shape optimization problem constrained with the Stokes equations to address maximization of vortices. Evolution Equations and Control Theory, 2022  doi: 10.3934/eect.2022003 [6] Yekini Shehu, Olaniyi Iyiola. On a modified extragradient method for variational inequality problem with application to industrial electricity production. Journal of Industrial and Management Optimization, 2019, 15 (1) : 319-342. doi: 10.3934/jimo.2018045 [7] Yarui Duan, Pengcheng Wu, Yuying Zhou. Penalty approximation method for a double obstacle quasilinear parabolic variational inequality problem. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022017 [8] T. A. Shaposhnikova, M. N. Zubova. Homogenization problem for a parabolic variational inequality with constraints on subsets situated on the boundary of the domain. Networks and Heterogeneous Media, 2008, 3 (3) : 675-689. doi: 10.3934/nhm.2008.3.675 [9] Xuqing Zhang, Jiayu Han, Yidu Yang. An adaptive finite element method for the elastic transmission eigenvalue problem. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022126 [10] Takeshi Fukao. Variational inequality for the Stokes equations with constraint. Conference Publications, 2011, 2011 (Special) : 437-446. doi: 10.3934/proc.2011.2011.437 [11] Barbara Kaltenbacher, Gunther Peichl. The shape derivative for an optimization problem in lithotripsy. Evolution Equations and Control Theory, 2016, 5 (3) : 399-430. doi: 10.3934/eect.2016011 [12] Jiaping Yu, Haibiao Zheng, Feng Shi, Ren Zhao. Two-grid finite element method for the stabilization of mixed Stokes-Darcy model. Discrete and Continuous Dynamical Systems - B, 2019, 24 (1) : 387-402. doi: 10.3934/dcdsb.2018109 [13] Yueqiang Shang, Qihui Zhang. A subgrid stabilizing postprocessed mixed finite element method for the time-dependent Navier-Stokes equations. Discrete and Continuous Dynamical Systems - B, 2021, 26 (6) : 3119-3142. doi: 10.3934/dcdsb.2020222 [14] Derrick Jones, Xu Zhang. A conforming-nonconforming mixed immersed finite element method for unsteady Stokes equations with moving interfaces. Electronic Research Archive, 2021, 29 (5) : 3171-3191. doi: 10.3934/era.2021032 [15] Xiaoxiao He, Fei Song, Weibing Deng. A stabilized nonconforming Nitsche's extended finite element method for Stokes interface problems. Discrete and Continuous Dynamical Systems - B, 2022, 27 (5) : 2849-2871. doi: 10.3934/dcdsb.2021163 [16] Christos V. Nikolopoulos, Georgios E. Zouraris. Numerical solution of a non-local elliptic problem modeling a thermistor with a finite element and a finite volume method. Conference Publications, 2007, 2007 (Special) : 768-778. doi: 10.3934/proc.2007.2007.768 [17] Alexander Zlotnik, Ilya Zlotnik. Finite element method with discrete transparent boundary conditions for the time-dependent 1D Schrödinger equation. Kinetic and Related Models, 2012, 5 (3) : 639-667. doi: 10.3934/krm.2012.5.639 [18] Daniele Boffi, Lucia Gastaldi. Discrete models for fluid-structure interactions: The finite element Immersed Boundary Method. Discrete and Continuous Dynamical Systems - S, 2016, 9 (1) : 89-107. doi: 10.3934/dcdss.2016.9.89 [19] Francis Akutsah, Akindele Adebayo Mebawondu, Hammed Anuoluwapo Abass, Ojen Kumar Narain. A self adaptive method for solving a class of bilevel variational inequalities with split variational inequality and composed fixed point problem constraints in Hilbert spaces. Numerical Algebra, Control and Optimization, 2021  doi: 10.3934/naco.2021046 [20] Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete and Continuous Dynamical Systems - B, 2021, 26 (1) : 61-79. doi: 10.3934/dcdsb.2020351

2021 Impact Factor: 1.865