\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Averaging of time-periodic dissipation potentials in rate-independent processes

M.H. was financed by Deutsche Forschungsgemeinschaft (DFG) through Grant CRC 1114 Scaling Cascades in Complex Systems, Project C05 Effective models for interfaces with many scales.
A.M. was partially supported by ERC through AdG 267802 AnaMultiScale

Abstract Full Text(HTML) Figure(4) Related Papers Cited by
  • We study the existence and well-posedness of rate-independent systems (or hysteresis operators) with a dissipation potential that oscillates in time with period $ \varepsilon$. In particular, for the case of quadratic energies in a Hilbert space, we study the averaging limit $ \varepsilon \to 0$ and show that the effective dissipation potential is given by the minimum of all friction thresholds in one period, more precisely as the intersection of all the characteristic domains. We show that the rates of the process do not converge weakly, hence our analysis uses the notion of energetic solutions and relies on a detailed estimates to obtain a suitable equi-continuity of the solutions in the limit $ \varepsilon \to 0$.

    Mathematics Subject Classification: Primary: 34C55, 47J20, 49J40, 74N30.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.1.  Because of the in-built unbalance, the plate compactor vibrates vertically leading to an oscillatory normal pressure. When pushing the plate compactor horizontally it will move only when the normal pressure is very low

    Figure 1.2.  (A) In rest, the woodpecker sticks to the metal rod by dry friction, when oscillating the reduction in friction allows for a slow sliding downwards, cf. [20]. (B) Toy ramp walker: the frog walks down only, when alternating the weight between the rigid downhill leg and the hinged uphill leg. (C) Rocking animal: A weight beyond the table edge pulls the cow forward, while the perpendicular rocking motions allows the lifted legs to swing forward because of the reduced normal pressure

    Figure 2.1.  The bold, red curve is the solution of $0\in \rho(t/\varepsilon)\mathrm{Sign}(\dot y(t)) + y(t) -5t +t^2$ with $y(0)=0$ for $\varepsilon =0.04$. The shaded, wavy area indicates the stable regions

    Figure 2.2.  Plots for the solution of (2.2). (A) The positions $y_j(t)$ of the two legs move by alternating between plateaus (sticking phase) and fast motion. (B) The derivatives $\dot y_j(t)$ show that the motion is alternating, i.e. at most one of the legs moves at a time. (C) The path $t\mapsto y(t)=(y_1(t),y_2(t)) \in \mathbb{R}^2$ shows a microscopic zigzag pattern.

  •   M. Al Janaideh , A time-dependent stop operator for modeling a class of singular hysteresis loops in a piezoceramic actuator, Physica B, 413 (2013) , 100-104.  doi: 10.1016/j.physb.2012.12.021.
      M. Al Janaideh  and  P. Krejčí , An inversion formula for a Prandtl-Ishlinskii operator with time dependent thresholds, Physica B, 406 (2011) , 1528-1532.  doi: 10.1016/j.physb.2011.01.062.
      L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows: In Metric Spaces and in the Space of Probability Measures, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2005.
      M. Brokate and J. Sprekels, Hysteresis and Phase Transitions, Springer-Verlag, New York, 1996. doi: 10.1007/978-1-4612-4048-8.
      G. Dal Maso , G. Francfort  and  R. Toader , Quasistatic crack growth in nonlinear elasticity, Arch. Rational Mech. Anal., 176 (2005) , 165-225.  doi: 10.1007/s00205-004-0351-4.
      A. DeSimone , P. Gidoni  and  G. Noselli , Liquid crystal elastomer strips as soft crawlers, J. Mech. Physics Solids, 84 (2015) , 254-272.  doi: 10.1016/j.jmps.2015.07.017.
      P. Gidoni and A. DeSimone, On the genesis of directional friction through bristle-like mediating elements crawler, arXiv: 1602.05611.
      P. Gidoni  and  A. DeSimone , Stasis domains and slip surfaces in the locomotion of a bio-inspired two-segment crawler, Meccanica, 52 (2017) , 587-601.  doi: 10.1007/s11012-016-0408-0.
      P. Gidoni , G. Noselli  and  A. DeSimone , Crawling on directional surfaces, Int. J. Non-Linear Mech., 61 (2014) , 65-73.  doi: 10.1016/j.ijnonlinmec.2014.01.012.
      J. Kopfová and V. Recupero, Bv-norm continuity of sweeping processes driven by a set with constant shape, Journal of Differential Equations, 261 (2016), 5875-5899, arXiv: 1512.08711. doi: 10.1016/j.jde.2016.08.025.
      P. Krejčí, Evolution variational inequalities and multidimensional hysteresis operators, in Nonlinear differential equations (eds. P. Drábek, P. Krejčí and P. Takáč), Chapman & Hall/CRC, Boca Raton, FL, 404 (1999), 47-110.
      P. Krejčí  and  M. Liero , Rate independent Kurzweil processes, Appl. Math., 54 (2009) , 117-145.  doi: 10.1007/s10492-009-0009-5.
      P. Krejči  and  T. Roche , Lipschitz continuous data dependence of sweeping processes in BV spaces, Discr. Cont. Dynam. Systems, Sec. B, 15 (2011) , 637-650.  doi: 10.3934/dcdsb.2011.15.637.
      M. Kunze  and  M. D. P. Monteiro Marques , On parabolic quasi-variational inequalities and state-dependent sweeping processes, Topol. Methods Nonlinear Anal., 12 (1998) , 179-191.  doi: 10.12775/TMNA.1998.036.
      A. Mielke, Evolution in rate-independent systems (Ch. 6), in Handbook of Differential Equations, Evolutionary Equations, vol. 2 (eds. C. Dafermos and E. Feireisl), Elsevier B. V. , Amsterdam, 2 (2005), 461-559.
      A. Mielke  and  F. Theil , On rate-independent hysteresis models, Nonl. Diff. Eqns. Appl. (NoDEA), 11 (2004) , 151-189, (Accepted July 2001).  doi: 10.1007/s00030-003-1052-7.
      A. Mielke and T. Roubíček, Rate-Independent Systems: Theory and Application, Applied Mathematical Sciences, Vol. 193, Springer-Verlag New York, 2015. doi: 10.1007/978-1-4939-2706-7.
      A. Mielke , T. Roubíček  and  U. Stefanelli , Γ-limits and relaxations for rate-independent evolutionary problems, Calc. Var. Part. Diff. Eqns., 31 (2008) , 387-416.  doi: 10.1007/s00526-007-0119-4.
      J.-J. Moreau , Evolution problem associated with a moving convex set in a Hilbert space, J. Differential Equations, 26 (1977) , 347-374.  doi: 10.1016/0022-0396(77)90085-7.
      F. Pfeiffer , Mechanische Systeme mit unstetigen Übergängen, Ingenieur-Archiv, 54 (1984) , 232-240, (In German). 
      M. Radtke and R. R. Netz, Shear-induced dynamics of polymeric globules at adsorbing homogeneous and inhomogeneous surfaces The European Physical Journal E, 37 (2014), p20. doi: 10.1140/epje/i2014-14020-7.
      V. Recupero , A continuity method for sweeping processes, Journal of Differential Equations, 251 (2011) , 2125-2142.  doi: 10.1016/j.jde.2011.06.018.
      T. Roche , Uniqueness of a quasivariational sweeping process on functions of bounded variation, Annali della Scuola Normale Superiore di Pisa-Classe di Scienze-Serie V, 11 (2012) , 363-394. 
      A. Visintin, Differential Models of Hysteresis, Springer-Verlag, Berlin, 1994. doi: 10.1007/978-3-662-11557-2.
  • 加载中

Figures(4)

SHARE

Article Metrics

HTML views(1106) PDF downloads(340) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return