Article Contents
Article Contents

# Inverse truss design as a conic mathematical program with equilibrium constraints

• * Corresponding author

The second author is supported by the Grant Agency of the Czech Republic project 15-00735S

• We formulate an inverse optimal design problem as a Mathematical Programming problem with Equilibrium Constraints (MPEC). The equilibrium constraints are in the form of a second-order conic optimization problem. Using the so-called Implicit Programming technique, we reformulate the bilevel optimization problem as a single-level nonsmooth nonconvex problem. The major part of the article is devoted to the computation of a subgradient of the resulting composite objective function. The article is concluded by numerical examples demonstrating, for the first time, that the Implicit Programming technique can be efficiently used in the numerical solution of MPECs with conic constraints on the lower level.

Mathematics Subject Classification: Primary: 49K40, 74P05; Secondary: 49M05, 90C30.

 Citation:

• Figure 1.  Two-bar truss

Figure 2.  Two solutions of the $3\times 3$ truss design problem with all nodes connected

Figure 3.  Five-by-three truss (Ex. 2): initial layout and optimal design

Figure 4.  Five-by-five truss (Ex. 3): initial layout and optimal design

Figure 5.  Five-by-five truss (Ex. 3): optimal load and corresponding design as computed by BTNCLC with INI1 (left) and INI3 (right)

Table 1.  Results of Example 2. The last columns show the number of iterations needed to obtain the value of the objective function smaller than $10^{-3}$-$10^{-6}$ and (the last column) to fulfill the stopping criterion

 method INI $c^*$ number of iterations to reach $10^{-3}$ $10^{-4}$ $10^{-5}$ $10^{-6}$ $c^*$ BTNCLC 1 $2.4\cdot 10^{-8}$ 23 36 50 63 88 BTNCLC 2 $2.0\cdot 10^{-8}$ 6 15 25 43 64 BTNCLC 3 $7.6\cdot 10^{-8}$ 9 11 16 23 26 NMSMAX 1 $7.7\cdot 10^{-6}$ 547 1018 3631 - 6617 NMSMAX 2 $1.5\cdot 10^{-4}$ 694 - - - 4406 NMSMAX 3 $5.7\cdot 10^{-6}$ 33 66 106 - 192

Table 2.  Results of Example 3. The last columns show the number of iterations needed to obtain the value of the objective function smaller than $10^{-3}$-$10^{-6}$ and (the last column) to fulfill the stopping criterion

 method INI $c^*$ number of iterations to reach $10^{-3}$ $10^{-4}$ $10^{-5}$ $10^{-6}$ $c^*$ BTNCLC 1 $2.6\cdot 10^{-7}$ 67 92 111 313 143 BTNCLC 2 $4.8\cdot 10^{-8}$ 9 29 46 71 99 BTNCLC 3 $4.4\cdot 10^{-1}$ - - - - 11 NMSMAX 1 $5.3\cdot 10^{-3}$ - - - - 13487 NMSMAX 2 $1.7\cdot 10^{-2}$ - - - - 7850 NMSMAX 3 $2.0\cdot 10^{-6}$ 68 157 171 - 207
•  W. Achtziger , M. Bendsoe , A. Ben-Tal  and  J. Zowe , Equivalent displacement based formulations for maximum strength truss topology design, IMPACT of Computing in Science and Engineering, 4 (1992) , 315-345.  doi: 10.1016/0899-8248(92)90005-S. M. Bendsoe and  O. Sigmund,  Topology Optimization. Theory, Methods and Applications, Springer-Verlag, Berlin, 2003. P. Beremlijski , J. Haslinger , M. Kocvara , R. Kucera  and  J. V. Outrata , Shape optimization in three-dimensional contact problems with coulomb friction, SIAM Journal on Optimization, 20 (2009) , 416-444.  doi: 10.1137/080714427. P. Beremlijski , J. Haslinger , J. V. Outrata  and  R. Pathó , Shape optimization in contact problems with coulomb friction and a solution-dependent friction coefficient, SIAM Journal on Control and Optimization, 52 (2014) , 3371-3400.  doi: 10.1137/130948070. J. -F. Bonnans and A. Shapiro, Perturbation Analysis of Optimization Problems, Springer Series in Operations Research. Springer-Verlag, New York, 2000. doi: 10.1007/978-1-4612-1394-9. J. F. Bonnans  and  H. Ramírez , Perturbation analysis of second-order cone programming problems, Mathematical Programming, 104 (2005) , 205-227.  doi: 10.1007/s10107-005-0613-4. J. -F. Bonnans, J. C. Gilbert, C. Lemaréchal and C. A. Sagastizábal, Numerical Optimization: Theoretical and Practical Aspects, Springer Science & Business Media, 2006. A. L. Dontchev  and  R. T. Rockafellar , Characterizations of strong regularity for variational inequalities over polyhedral convex sets, SIAM Journal on Optimization, 6 (1996) , 1087-1105.  doi: 10.1137/S1052623495284029. A. L. Dontchev and R. T. Rockafellar, Implicit Functions and Solution Mappings, Springer Monographs in Mathematics. Springer, Dordrecht, 2009. doi: 10.1007/978-0-387-87821-8. D. Dorsch , W. Gómez  and  V. Shikhman , Sufficient optimality conditions hold for almost all nonlinear semidefinite programs, Mathematical Programming, 158 (2016) , 77-97.  doi: 10.1007/s10107-015-0915-0. G. Inc, Gurobi Optimizer Reference Manual. Version 6.5, 2016. R. Henrion , A. Jourani  and  J. Outrata , On the calmness of a class of multifunctions, SIAM Journal on Optimization, 13 (2002) , 603-618.  doi: 10.1137/S1052623401395553. N. J. Higham , Optimization by direct search in matrix computations, SIAM J. Matrix Anal. Appl., 14 (1993) , 317-333.  doi: 10.1137/0614023. R. A. Horn and  C. R. Johnson,  Matrix Analysis, Cambridge University Press, Cambridge, 2013. F. Jarre, Elementary optimality conditions for nonlinear SDPs, in Handbook on Semidefinite, Conic and Polynomial Optimization (eds. M. Anjos and J. Lasserre), Springer, 166 (2012), 455-470. doi: 10.1007/978-1-4614-0769-0_16. C. Kanzow  and  A. Schwartz , Mathematical programs with equilibrium constraints: Enhanced fritz john-conditions, new constraint qualifications, and improved exact penalty results, SIAM Journal on Optimization, 20 (2010) , 2730-2753.  doi: 10.1137/090774975. M. Kočvara , M. Zibulevsky  and  J. Zowe , Mechanical design problems with unilateral contact, M2AN Mathematical Modelling and Numerical Analysis, 32 (1998) , 255-281.  doi: 10.1051/m2an/1998320302551. M. Kočvara, M. Kružík and J. V. Outrata, On the control of an evolutionary equilibrium in micromagnetics, in Optimization with multivalued mappings, Springer, 2 (2006), 143-168. doi: 10.1007/0-387-34221-4_8. M. Kočvara  and  J. V. Outrata , Optimization problems with equilibrium constraints and their numerical solution, Mathematical Programming, 101 (2004) , 119-149.  doi: 10.1007/s10107-004-0539-2. A. Korányi , Monotone functions on formally real Jordan algebras, Mathematische Annalen, 269 (1984) , 73-76.  doi: 10.1007/BF01455996. J. Löfberg, YALMIP : A toolbox for modeling and optimization in MATLAB, in Proceedings of the 2004 IEEE International Symposium on Computer Aided Control Systems Design, Taipei, Taiwan, 2004,284-289. Z.-Q. Luo,  J.-S. Pang and  D. Ralph,  Mathematical Programs with Equilibrium Constraints, Cambridge University Press, 1996.  doi: 10.1017/CBO9780511983658. B. S. Mordukhovich, Variational Analysis and Generalized Differentiation Ⅰ: Basic Theory, vol. 330, Springer Science & Business Media, 2006. B. S. Mordukhovich , N. M. Nam  and  N. T. Yen Nhi , Partial second-order subdifferentials in variational analysis and optimization, Numerical Functional Analysis and Optimization, 35 (2014) , 1113-1151.  doi: 10.1080/01630563.2014.895747. B. S. Mordukhovich  and  J. V. Outrata , Coderivative analysis of quasi-variational inequalities with applications to stability and optimization, SIAM Journal on Optimization, 18 (2007) , 389-412.  doi: 10.1137/060665609. B. S. Mordukhovich  and  R. T. Rockafellar , Second-order subdifferential calculus with applications to tilt stability in optimization, SIAM Journal on Optimization, 22 (2012) , 953-986.  doi: 10.1137/110852528. MOSEK ApS, The MOSEK Optimization Toolbox for MATLAB Manual. Version 7. 1 (Revision 28), 2015, URL http://docs.mosek.com/7.1/toolbox/index.html. J. V. Outrata, M. Kočvara and J. Zowe, Nonsmooth Approach to Optimization Problems with Equilibrium Constraints: Theory, Applications and Numerical Results, vol. 28, Springer Science & Business Media, 1998. doi: 10.1007/978-1-4757-2825-5. J. V. Outrata  and  H. Ramírez C , On the Aubin property of critical points to perturbed second-order cone programs, SIAM Journal on Optimization, 21 (2011) , 798-823.  doi: 10.1137/100807168. J. V. Outrata  and  D. Sun , On the coderivative of the projection operator onto the second-order cone, Set-Valued Analysis, 16 (2008) , 999-1014.  doi: 10.1007/s11228-008-0092-x. R. T. Rockafellar and  R. J.-B. Wets,  Variational Analysis, Springer, Berlin-Heidelberg, 1998.  doi: 10.1007/978-3-642-02431-3. H. Scheel  and  S. Scholtes , Mathematical programs with equilibrium constraints: Stationarity, optimality and sensitivity, Mathematics of Operations Research, 25 (2000) , 1-22.  doi: 10.1287/moor.25.1.1.15213. H. Schramm  and  J. Zowe , A version of the bundle idea for minimizing a nonsmooth function: Conceptual idea, convergence analysis, numerical results, SIAM Journal on Optimization, 2 (1992) , 121-152.  doi: 10.1137/0802008.

Figures(5)

Tables(2)