An optimal control problem is studied for a quasilinear Maxwell equation of nondegenerate parabolic type. Well-posedness of the quasilinear state equation, existence of an optimal control, and weak Gâteaux-differentiability of the control-to-state mapping are proved. Based on these results, first-order necessary optimality conditions and an associated adjoint calculus are derived.
Citation: |
C. Amrouche
, C. Bernardi
, M. Dauge
and V. Girault
, Vector potentials in three-dimensional non-smooth domains, Math. Methods Appl. Sci., 21 (1998)
, 823-864.
doi: 10.1002/(SICI)1099-1476(199806)21:9<823::AID-MMA976>3.0.CO;2-B.![]() ![]() ![]() |
|
F. Bachinger
, U. Langer
and J. Schöberl
, Numerical analysis of nonlinear multiharmonic eddy current problems, Numer. Math., 100 (2005)
, 593-616.
doi: 10.1007/s00211-005-0597-2.![]() ![]() ![]() |
|
G. Bärwolff
and M. Hinze
, Optimization of semiconductor melts, ZAMM Z. Angew. Math. Mech., 86 (2006)
, 423-437.
doi: 10.1002/zamm.200410247.![]() ![]() ![]() |
|
V. Bommer
and I. Yousept
, Optimal control of the full time-dependent Maxwell equations, ESAIM Math. Model. Numer. Anal., 50 (2016)
, 237-261.
doi: 10.1051/m2an/2015041.![]() ![]() ![]() |
|
P.E. Druet
, O. Klein
, J. Sprekels
, F. Tröltzsch
and I. Yousept
, Optimal control of three-dimensional state-constrained induction heating problems with nonlocal radiation effects, SIAM J. Control Optim., 49 (2011)
, 1707-1736.
doi: 10.1137/090760544.![]() ![]() ![]() |
|
R. Griesse
and K. Kunisch
, Optimal control for a stationary MHD system in velocity-current formulation, SIAM J. Control Optim., 45 (2006)
, 1822-1845.
doi: 10.1137/050624236.![]() ![]() ![]() |
|
M. Gunzburger
and C. Trenchea
, Analysis and discretization of an optimal control problem for the time-periodic MHD equations, J. Math. Anal. Appl., 308 (2005)
, 440-466.
doi: 10.1016/j.jmaa.2004.11.022.![]() ![]() ![]() |
|
M. Hinze
, Control of weakly conductive fluids by near wall Lorentz forces, GAMM-Mitt., 30 (2007)
, 149-158.
doi: 10.1002/gamm.200790004.![]() ![]() ![]() |
|
D. Hömberg
and J. Sokolowski
, Optimal shape design of inductor coils for surface hardening, Numer. Funct. Anal. Optim., 42 (2003)
, 1087-1117.
doi: 10.1137/S0363012900375822.![]() ![]() ![]() |
|
M. Kolmbauer
and U. Langer
, A robust preconditioned MinRes solver for distributed time-periodic eddy current optimal control problems, SIAM J. Sci. Comput., 34 (2012)
, B785-B809.
doi: 10.1137/110842533.![]() ![]() ![]() |
|
S. Nicaise
, S. Stingelin
and F. Tröltzsch
, On two optimal control problems for magnetic fields, Computational Methods in Applied Mathematics, 14 (2014)
, 555-573.
doi: 10.1515/cmam-2014-0022.![]() ![]() ![]() |
|
S. Nicaise
, S. Stingelin
and F. Tröltzsch
, Optimal control of magnetic fields in flow measurement, Discrete and Continuous Dynamical Systems-S, 8 (2015)
, 579-605.
![]() |
|
S. Nicaise
and F. Tröltzsch
, A coupled Maxwell integrodifferential model for magnetization processes, Mathematische Nachrichten, 287 (2014)
, 432-452.
doi: 10.1002/mana.201200206.![]() ![]() ![]() |
|
T. Roubíček,
Nonlinear Partial Differential Equations with Applications, volume 153 of International Series of Numerical Mathematics, Birkhäuser/Springer Basel AG, Basel, second edition, 2013.
doi: 10.1007/978-3-0348-0513-1.![]() ![]() ![]() |
|
R. E. Showalter,
Monotone Operators in Banach Space and Nonlinear Partial Differential Equations, volume 49 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 1997.
![]() ![]() |
|
F. Tröltzsch,
Optimal Control of Partial Differential Equations. Theory, Methods and Applications, volume 112. American Math. Society, Providence, 2010.
![]() |
|
I. Yousept
, Optimal control of Maxwell's equations with regularized state constraints, Comput. Optim. Appl., 52 (2012)
, 559-581.
doi: 10.1007/s10589-011-9422-2.![]() ![]() ![]() |
|
I. Yousept
and F. Tröltzsch
, PDE-constrained optimization of time-dependent 3d electromagnetic induction heating by alternating voltages, ESAIM M2AN, 46 (2012)
, 709-729.
doi: 10.1051/m2an/2011052.![]() ![]() ![]() |
|
I. Yousept
, Optimal control of quasilinear H(curl)-elliptic partial differential equations in magnetostatic field problems, SIAM J. Control Optim., 51 (2013)
, 3624-3651.
doi: 10.1137/120904299.![]() ![]() ![]() |