December  2017, 10(6): 1413-1466. doi: 10.3934/dcdss.2017075

Existence results for a coupled viscoplastic-damage model in thermoviscoelasticity

DIMI -Universitá degli studi di Brescia, V. Branze, 38, Brescia, I-25133, Italy

Dedicated to Tomáš Roubíček on the occasion of his sixtieth birthday

Received  September 2016 Revised  December 2016 Published  June 2017

Fund Project: The author has been partially supported by the Gruppo Nazionale per l'Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM)

In this paper we address a model coupling viscoplasticity with damage in thermoviscoelasticity. The associated PDE system consists of the momentum balance with viscosity and inertia for the displacement variable, at small strains, of the plastic and damage flow rules, and of the heat equation. It has a strongly nonlinear character and in particular features quadratic terms on the right-hand side of the heat equation and of the damage flow rule, which have to be handled carefully. We propose two weak solution concepts for the related initial-boundary value problem, namely 'entropic' and 'weak energy' solutions. Accordingly, we prove two existence results by passing to the limit in a carefully devised time discretization scheme. Finally, in the case of a prescribed temperature profile, and under a strongly simplifying condition, we provide a continuous dependence result, yielding uniqueness of weak energy solutions.

Citation: Riccarda Rossi. Existence results for a coupled viscoplastic-damage model in thermoviscoelasticity. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1413-1466. doi: 10.3934/dcdss.2017075
References:
[1]

R. AlessiJ. Marigo and S. Vidoli, Gradient damage models coupled with plasticity and nucleation of cohesive cracks, Arch. Ration. Mech. Anal., 214 (2014), 575-615.  doi: 10.1007/s00205-014-0763-8.  Google Scholar

[2]

R. AlessiJ. Marigo and S. Vidoli, Gradient damage models coupled with plasticity: variational formulation and main properties, Mech. Mater., 80 (2015), 351-367.  doi: 10.1016/j.mechmat.2013.12.005.  Google Scholar

[3]

S. Bartels and T. Roubíček, Thermoviscoplasticity at small strains, ZAMM Z. Angew. Math. Mech., 88 (2008), 735-754.  doi: 10.1002/zamm.200800042.  Google Scholar

[4]

S. Bartels and T. Roubíček, Thermo-visco-elasticity with rate-independent plasticity in isotropic materials undergoing thermal expansion, ESAIM Math. Model. Numer. Anal., 45 (2011), 477-504.  doi: 10.1051/m2an/2010063.  Google Scholar

[5]

E. Bonetti and G. Bonfanti, Well-posedness results for a model of damage in thermoviscoelastic materials, Ann. Inst. H. Poincaré Anal. Non Linéaire, 25 (2008), 1187-1208.  doi: 10.1016/j.anihpc.2007.05.009.  Google Scholar

[6]

E. BonettiE. RoccaR. Rossi and M. Thomas, A rate-independent gradient system in damage coupled with plasticity via structured strains, ESAIM: Proceedings and Surveys, 54 (2016), 54-69.  doi: 10.1051/proc/201654054.  Google Scholar

[7]

M. BrokateP. Krejčí and H. Schnabel, On uniqueness in evolution quasivariational inequalities, J. Convex Anal., 11 (2004), 111-130.   Google Scholar

[8]

C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Lectures Notes in Mathematics, Vol. 580, Springer-Verlag, Berlin-New York, 1977.  Google Scholar

[9]

V. Crismale, Globally stable quasistatic evolution for a coupled elastoplastic-damage model, ESAIM Control Optim. Calc. Var., 22 (2016), 883-912.  doi: 10.1051/cocv/2015037.  Google Scholar

[10]

V. Crismale, Globally stable quasistatic evolution for strain gradient plasticity coupled with damage, Ann. Mat. Pura Appl., 196 (2017), 641-685.  doi: 10.1007/s10231-016-0590-7.  Google Scholar

[11]

V. Crismale and G. Lazzaroni, Viscous approximation of quasistatic evolutions for a coupled elastoplastic-damage model Calc. Var. Partial Differential Equations, 55 (2016), Art. 17, 54pp. doi: 10.1007/s00526-015-0947-6.  Google Scholar

[12]

G. Dal MasoA. DeSimone and M. Mora, Quasistatic evolution problems for linearly elastic-perfectly plastic materials, Arch. Rational Mech. Anal., 180 (2006), 237-291.  doi: 10.1007/s00205-005-0407-0.  Google Scholar

[13]

E. Feireisl, Mathematical theory of compressible, viscous, and heat conducting fluids, Comput. Math. Appl., 53 (2007), 461-490.  doi: 10.1016/j.camwa.2006.02.042.  Google Scholar

[14]

E. FeireislH. Petzeltová and E. Rocca, Existence of solutions to a phase transition model with microscopic movements, Math. Methods Appl. Sci., 32 (2009), 1345-1369.  doi: 10.1002/mma.1089.  Google Scholar

[15] M. Frémond, Non-Smooth Thermomechanics, Springer-Verlag, Berlin Heidelberg, 2002.   Google Scholar
[16]

G. Geymonat and P. Suquet, Functional spaces for Norton-Hoff materials, Math. Methods Appl. Sci., 8 (1986), 206-222.  doi: 10.1002/mma.1670080113.  Google Scholar

[17]

C. Heinemann and C. Kraus, Existence of weak solutions for Cahn-Hilliard systems coupled with elasticity and damage, Adv. Math. Sci. Appl., 21 (2011), 321-359.   Google Scholar

[18]

C. Heinemann and C. Kraus, Existence results for diffuse interface models describing phase separation and damage, European J. Appl. Math., 24 (2013), 179-211.  doi: 10.1017/S095679251200037X.  Google Scholar

[19]

C. Heinemann and E. Rocca, Damage processes in thermoviscoelastic materials with damage-dependent thermal expansion coefficients, Math. Methods Appl. Sci., 38 (2015), 4587-4612.  doi: 10.1002/mma.3393.  Google Scholar

[20]

R. HerzogC. Meyer and A. Stötzner, Existence of solutions of a (sonsmooth) thermoviscoplastic model and sssociated optimal control problems, Nonlinear Anal. Real World Appl., 35 (2017), 75-101.  doi: 10.1016/j.nonrwa.2016.10.008.  Google Scholar

[21]

A. D. Ioffe, On lower semicontinuity of integral functionals. Ⅰ, SIAM J. Control Optimization, 15 (1977), 521-538.  doi: 10.1137/0315035.  Google Scholar

[22] R. Klein, Laser Welding of Plastics, John Wiley & Sons Inc., New York, 2012.  doi: 10.1002/9783527636969.  Google Scholar
[23]

D. KneesR. Rossi and C. Zanini, A vanishing viscosity approach to a rate-independent damage model, Math. Models Methods Appl. Sci., 23 (2013), 565-616.  doi: 10.1142/S021820251250056X.  Google Scholar

[24]

P. Krejčí and J. Sprekels, On a system of nonlinear PDEs with temperature-dependent hysteresis in one-dimensional thermoplasticity, J. Math. Anal. Appl., 209 (1997), 25-46.  doi: 10.1006/jmaa.1997.5304.  Google Scholar

[25]

P. KrejčíJ. Sprekels and U. Stefanelli, Phase-field models with hysteresis in one-dimensional thermoviscoplasticity, SIAM J. Math. Anal., 34 (2002), 409-434.  doi: 10.1137/S0036141001387604.  Google Scholar

[26]

P. KrejčíJ. Sprekels and U. Stefanelli, One-dimensional thermo-visco-plastic processes with hysteresis and phase transitions, Adv. Math. Sci. Appl., 13 (2003), 695-712.   Google Scholar

[27]

G. Lazzaroni, R. Rossi, M. Thomas and R. Toader, Rate-independent damage in thermo-viscoelastic materials with inertia, WIAS Preprint 2025. Google Scholar

[28]

M. Marcus and V. Mizel, Every superposition operator mapping one Sobolev space into another is continuous, J. Funct. Anal., 33 (1979), 217-229.  doi: 10.1016/0022-1236(79)90113-7.  Google Scholar

[29]

A. Mielke and R. Rossi, Existence and uniqueness results for a class of rate-independent hysteresis problems, Math. Models Methods Appl. Sci., 17 (2007), 81-123.  doi: 10.1142/S021820250700184X.  Google Scholar

[30]

E. Rocca and R. Rossi, A degenerating PDE system for phase transitions and damage, Math. Models Methods Appl. Sci., 24 (2014), 1265-1341.  doi: 10.1142/S021820251450002X.  Google Scholar

[31]

E. Rocca and R. Rossi, "Entropic" solutions to a thermodynamically consistent PDE system for phase transitions and damage, SIAM J. Math. Anal., 47 (2015), 2519-2586.  doi: 10.1137/140960803.  Google Scholar

[32]

R. Rossi, From visco to perfect plasticity in thermoviscoelastic materials, Preprint arXiv: 1609.07232. Google Scholar

[33]

T. Roubíček, Thermodynamics of rate-independent processes in viscous solids at small strains, SIAM J. Math. Anal., 42 (2010), 256-297.  doi: 10.1137/080729992.  Google Scholar

[34]

T. Roubíček, Nonlinear Partial Differential Equations with Applications, vol. 153 of International Series of Numerical Mathematics, 2nd edition, Birkhäuser/Springer Basel AG, Basel, 2013. doi: 10.1007/978-3-0348-0513-1.  Google Scholar

[35]

T. Roubíček, Thermodynamics of perfect plasticity, Discrete Contin. Dyn. Syst. Ser. S, 6 (2013), 193-214.  doi: 10.3934/dcdss.2013.6.193.  Google Scholar

[36]

T. RoubíčekO. Souček and R. Vodička, A model of rupturing lithospheric faults with reoccurring earthquakes, SIAM J. Appl. Math., 73 (2013), 1460-1488.  doi: 10.1137/120870396.  Google Scholar

[37]

T. Roubíček and G. Tomassetti, Thermomechanics of damageable materials under diffusion: Modelling and analysis, Z. Angew. Math. Phys., 66 (2015), 3535-3572.  doi: 10.1007/s00033-015-0566-2.  Google Scholar

[38]

T. Roubíček and J. Valdman, Perfect plasticity with damage and healing at small strains, its modeling, analysis, and computer implementation, SIAM J. Appl. Math., 76 (2016), 314-340.  doi: 10.1137/15M1019647.  Google Scholar

[39]

J. Simon, Compact sets in the space $L^p(0, T; B)$, Ann. Mat. Pura Appl., 146 (1987), 65-96.  doi: 10.1007/BF01762360.  Google Scholar

[40]

F. Solombrino, Quasistatic evolution problems for nonhomogeneous elastic plastic materials, J. Convex Anal., 16 (2009), 89-119.   Google Scholar

show all references

References:
[1]

R. AlessiJ. Marigo and S. Vidoli, Gradient damage models coupled with plasticity and nucleation of cohesive cracks, Arch. Ration. Mech. Anal., 214 (2014), 575-615.  doi: 10.1007/s00205-014-0763-8.  Google Scholar

[2]

R. AlessiJ. Marigo and S. Vidoli, Gradient damage models coupled with plasticity: variational formulation and main properties, Mech. Mater., 80 (2015), 351-367.  doi: 10.1016/j.mechmat.2013.12.005.  Google Scholar

[3]

S. Bartels and T. Roubíček, Thermoviscoplasticity at small strains, ZAMM Z. Angew. Math. Mech., 88 (2008), 735-754.  doi: 10.1002/zamm.200800042.  Google Scholar

[4]

S. Bartels and T. Roubíček, Thermo-visco-elasticity with rate-independent plasticity in isotropic materials undergoing thermal expansion, ESAIM Math. Model. Numer. Anal., 45 (2011), 477-504.  doi: 10.1051/m2an/2010063.  Google Scholar

[5]

E. Bonetti and G. Bonfanti, Well-posedness results for a model of damage in thermoviscoelastic materials, Ann. Inst. H. Poincaré Anal. Non Linéaire, 25 (2008), 1187-1208.  doi: 10.1016/j.anihpc.2007.05.009.  Google Scholar

[6]

E. BonettiE. RoccaR. Rossi and M. Thomas, A rate-independent gradient system in damage coupled with plasticity via structured strains, ESAIM: Proceedings and Surveys, 54 (2016), 54-69.  doi: 10.1051/proc/201654054.  Google Scholar

[7]

M. BrokateP. Krejčí and H. Schnabel, On uniqueness in evolution quasivariational inequalities, J. Convex Anal., 11 (2004), 111-130.   Google Scholar

[8]

C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Lectures Notes in Mathematics, Vol. 580, Springer-Verlag, Berlin-New York, 1977.  Google Scholar

[9]

V. Crismale, Globally stable quasistatic evolution for a coupled elastoplastic-damage model, ESAIM Control Optim. Calc. Var., 22 (2016), 883-912.  doi: 10.1051/cocv/2015037.  Google Scholar

[10]

V. Crismale, Globally stable quasistatic evolution for strain gradient plasticity coupled with damage, Ann. Mat. Pura Appl., 196 (2017), 641-685.  doi: 10.1007/s10231-016-0590-7.  Google Scholar

[11]

V. Crismale and G. Lazzaroni, Viscous approximation of quasistatic evolutions for a coupled elastoplastic-damage model Calc. Var. Partial Differential Equations, 55 (2016), Art. 17, 54pp. doi: 10.1007/s00526-015-0947-6.  Google Scholar

[12]

G. Dal MasoA. DeSimone and M. Mora, Quasistatic evolution problems for linearly elastic-perfectly plastic materials, Arch. Rational Mech. Anal., 180 (2006), 237-291.  doi: 10.1007/s00205-005-0407-0.  Google Scholar

[13]

E. Feireisl, Mathematical theory of compressible, viscous, and heat conducting fluids, Comput. Math. Appl., 53 (2007), 461-490.  doi: 10.1016/j.camwa.2006.02.042.  Google Scholar

[14]

E. FeireislH. Petzeltová and E. Rocca, Existence of solutions to a phase transition model with microscopic movements, Math. Methods Appl. Sci., 32 (2009), 1345-1369.  doi: 10.1002/mma.1089.  Google Scholar

[15] M. Frémond, Non-Smooth Thermomechanics, Springer-Verlag, Berlin Heidelberg, 2002.   Google Scholar
[16]

G. Geymonat and P. Suquet, Functional spaces for Norton-Hoff materials, Math. Methods Appl. Sci., 8 (1986), 206-222.  doi: 10.1002/mma.1670080113.  Google Scholar

[17]

C. Heinemann and C. Kraus, Existence of weak solutions for Cahn-Hilliard systems coupled with elasticity and damage, Adv. Math. Sci. Appl., 21 (2011), 321-359.   Google Scholar

[18]

C. Heinemann and C. Kraus, Existence results for diffuse interface models describing phase separation and damage, European J. Appl. Math., 24 (2013), 179-211.  doi: 10.1017/S095679251200037X.  Google Scholar

[19]

C. Heinemann and E. Rocca, Damage processes in thermoviscoelastic materials with damage-dependent thermal expansion coefficients, Math. Methods Appl. Sci., 38 (2015), 4587-4612.  doi: 10.1002/mma.3393.  Google Scholar

[20]

R. HerzogC. Meyer and A. Stötzner, Existence of solutions of a (sonsmooth) thermoviscoplastic model and sssociated optimal control problems, Nonlinear Anal. Real World Appl., 35 (2017), 75-101.  doi: 10.1016/j.nonrwa.2016.10.008.  Google Scholar

[21]

A. D. Ioffe, On lower semicontinuity of integral functionals. Ⅰ, SIAM J. Control Optimization, 15 (1977), 521-538.  doi: 10.1137/0315035.  Google Scholar

[22] R. Klein, Laser Welding of Plastics, John Wiley & Sons Inc., New York, 2012.  doi: 10.1002/9783527636969.  Google Scholar
[23]

D. KneesR. Rossi and C. Zanini, A vanishing viscosity approach to a rate-independent damage model, Math. Models Methods Appl. Sci., 23 (2013), 565-616.  doi: 10.1142/S021820251250056X.  Google Scholar

[24]

P. Krejčí and J. Sprekels, On a system of nonlinear PDEs with temperature-dependent hysteresis in one-dimensional thermoplasticity, J. Math. Anal. Appl., 209 (1997), 25-46.  doi: 10.1006/jmaa.1997.5304.  Google Scholar

[25]

P. KrejčíJ. Sprekels and U. Stefanelli, Phase-field models with hysteresis in one-dimensional thermoviscoplasticity, SIAM J. Math. Anal., 34 (2002), 409-434.  doi: 10.1137/S0036141001387604.  Google Scholar

[26]

P. KrejčíJ. Sprekels and U. Stefanelli, One-dimensional thermo-visco-plastic processes with hysteresis and phase transitions, Adv. Math. Sci. Appl., 13 (2003), 695-712.   Google Scholar

[27]

G. Lazzaroni, R. Rossi, M. Thomas and R. Toader, Rate-independent damage in thermo-viscoelastic materials with inertia, WIAS Preprint 2025. Google Scholar

[28]

M. Marcus and V. Mizel, Every superposition operator mapping one Sobolev space into another is continuous, J. Funct. Anal., 33 (1979), 217-229.  doi: 10.1016/0022-1236(79)90113-7.  Google Scholar

[29]

A. Mielke and R. Rossi, Existence and uniqueness results for a class of rate-independent hysteresis problems, Math. Models Methods Appl. Sci., 17 (2007), 81-123.  doi: 10.1142/S021820250700184X.  Google Scholar

[30]

E. Rocca and R. Rossi, A degenerating PDE system for phase transitions and damage, Math. Models Methods Appl. Sci., 24 (2014), 1265-1341.  doi: 10.1142/S021820251450002X.  Google Scholar

[31]

E. Rocca and R. Rossi, "Entropic" solutions to a thermodynamically consistent PDE system for phase transitions and damage, SIAM J. Math. Anal., 47 (2015), 2519-2586.  doi: 10.1137/140960803.  Google Scholar

[32]

R. Rossi, From visco to perfect plasticity in thermoviscoelastic materials, Preprint arXiv: 1609.07232. Google Scholar

[33]

T. Roubíček, Thermodynamics of rate-independent processes in viscous solids at small strains, SIAM J. Math. Anal., 42 (2010), 256-297.  doi: 10.1137/080729992.  Google Scholar

[34]

T. Roubíček, Nonlinear Partial Differential Equations with Applications, vol. 153 of International Series of Numerical Mathematics, 2nd edition, Birkhäuser/Springer Basel AG, Basel, 2013. doi: 10.1007/978-3-0348-0513-1.  Google Scholar

[35]

T. Roubíček, Thermodynamics of perfect plasticity, Discrete Contin. Dyn. Syst. Ser. S, 6 (2013), 193-214.  doi: 10.3934/dcdss.2013.6.193.  Google Scholar

[36]

T. RoubíčekO. Souček and R. Vodička, A model of rupturing lithospheric faults with reoccurring earthquakes, SIAM J. Appl. Math., 73 (2013), 1460-1488.  doi: 10.1137/120870396.  Google Scholar

[37]

T. Roubíček and G. Tomassetti, Thermomechanics of damageable materials under diffusion: Modelling and analysis, Z. Angew. Math. Phys., 66 (2015), 3535-3572.  doi: 10.1007/s00033-015-0566-2.  Google Scholar

[38]

T. Roubíček and J. Valdman, Perfect plasticity with damage and healing at small strains, its modeling, analysis, and computer implementation, SIAM J. Appl. Math., 76 (2016), 314-340.  doi: 10.1137/15M1019647.  Google Scholar

[39]

J. Simon, Compact sets in the space $L^p(0, T; B)$, Ann. Mat. Pura Appl., 146 (1987), 65-96.  doi: 10.1007/BF01762360.  Google Scholar

[40]

F. Solombrino, Quasistatic evolution problems for nonhomogeneous elastic plastic materials, J. Convex Anal., 16 (2009), 89-119.   Google Scholar

[1]

Matthieu Hillairet, Alexei Lozinski, Marcela Szopos. On discretization in time in simulations of particulate flows. Discrete & Continuous Dynamical Systems - B, 2011, 15 (4) : 935-956. doi: 10.3934/dcdsb.2011.15.935

[2]

Yinhua Xia, Yan Xu, Chi-Wang Shu. Efficient time discretization for local discontinuous Galerkin methods. Discrete & Continuous Dynamical Systems - B, 2007, 8 (3) : 677-693. doi: 10.3934/dcdsb.2007.8.677

[3]

Changbing Hu, Kaitai Li. A simple construction of inertial manifolds under time discretization. Discrete & Continuous Dynamical Systems - A, 1997, 3 (4) : 531-540. doi: 10.3934/dcds.1997.3.531

[4]

Peter E. Kloeden, Björn Schmalfuss. Lyapunov functions and attractors under variable time-step discretization. Discrete & Continuous Dynamical Systems - A, 1996, 2 (2) : 163-172. doi: 10.3934/dcds.1996.2.163

[5]

Orazio Muscato, Wolfgang Wagner. A stochastic algorithm without time discretization error for the Wigner equation. Kinetic & Related Models, 2019, 12 (1) : 59-77. doi: 10.3934/krm.2019003

[6]

Olivier Goubet, Ezzeddine Zahrouni. On a time discretization of a weakly damped forced nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2008, 7 (6) : 1429-1442. doi: 10.3934/cpaa.2008.7.1429

[7]

T. Colin, Géraldine Ebrard, Gérard Gallice. Semi-discretization in time for nonlinear Zakharov waves equations. Discrete & Continuous Dynamical Systems - B, 2009, 11 (2) : 263-282. doi: 10.3934/dcdsb.2009.11.263

[8]

Pierluigi Colli, Shunsuke Kurima. Time discretization of a nonlinear phase field system in general domains. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3161-3179. doi: 10.3934/cpaa.2019142

[9]

Christian Heinemann, Christiane Kraus. Existence of weak solutions for a PDE system describing phase separation and damage processes including inertial effects. Discrete & Continuous Dynamical Systems - A, 2015, 35 (6) : 2565-2590. doi: 10.3934/dcds.2015.35.2565

[10]

Jérôme Buzzi, Todd Fisher. Entropic stability beyond partial hyperbolicity. Journal of Modern Dynamics, 2013, 7 (4) : 527-552. doi: 10.3934/jmd.2013.7.527

[11]

Ulisse Stefanelli. Analysis of a variable time-step discretization for a phase transition model with micro-movements. Communications on Pure & Applied Analysis, 2006, 5 (3) : 659-673. doi: 10.3934/cpaa.2006.5.659

[12]

Henri Schurz. Analysis and discretization of semi-linear stochastic wave equations with cubic nonlinearity and additive space-time noise. Discrete & Continuous Dynamical Systems - S, 2008, 1 (2) : 353-363. doi: 10.3934/dcdss.2008.1.353

[13]

T. J. Sullivan, M. Koslowski, F. Theil, Michael Ortiz. Thermalization of rate-independent processes by entropic regularization. Discrete & Continuous Dynamical Systems - S, 2013, 6 (1) : 215-233. doi: 10.3934/dcdss.2013.6.215

[14]

Gilles Pijaudier-Cabot, David Grégoire. A review of non local continuum damage: Modelling of failure?. Networks & Heterogeneous Media, 2014, 9 (4) : 575-597. doi: 10.3934/nhm.2014.9.575

[15]

Gianni Dal Maso, Flaviana Iurlano. Fracture models as $\Gamma$-limits of damage models. Communications on Pure & Applied Analysis, 2013, 12 (4) : 1657-1686. doi: 10.3934/cpaa.2013.12.1657

[16]

Alexander Mielke. Complete-damage evolution based on energies and stresses. Discrete & Continuous Dynamical Systems - S, 2011, 4 (2) : 423-439. doi: 10.3934/dcdss.2011.4.423

[17]

Marita Thomas. Quasistatic damage evolution with spatial $\mathrm{BV}$-regularization. Discrete & Continuous Dynamical Systems - S, 2013, 6 (1) : 235-255. doi: 10.3934/dcdss.2013.6.235

[18]

José A. Carrillo, Ansgar Jüngel, Shaoqiang Tang. Positive entropic schemes for a nonlinear fourth-order parabolic equation. Discrete & Continuous Dynamical Systems - B, 2003, 3 (1) : 1-20. doi: 10.3934/dcdsb.2003.3.1

[19]

Vladimir Dubinko. Mechanisms of recovery of radiation damage based on the interaction of quodons with crystal defects. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1119-1128. doi: 10.3934/dcdss.2011.4.1119

[20]

Marin Kobilarov, Jerrold E. Marsden, Gaurav S. Sukhatme. Geometric discretization of nonholonomic systems with symmetries. Discrete & Continuous Dynamical Systems - S, 2010, 3 (1) : 61-84. doi: 10.3934/dcdss.2010.3.61

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (19)
  • HTML views (85)
  • Cited by (2)

Other articles
by authors

[Back to Top]