In this paper we address a model coupling viscoplasticity with damage in thermoviscoelasticity. The associated PDE system consists of the momentum balance with viscosity and inertia for the displacement variable, at small strains, of the plastic and damage flow rules, and of the heat equation. It has a strongly nonlinear character and in particular features quadratic terms on the right-hand side of the heat equation and of the damage flow rule, which have to be handled carefully. We propose two weak solution concepts for the related initial-boundary value problem, namely 'entropic' and 'weak energy' solutions. Accordingly, we prove two existence results by passing to the limit in a carefully devised time discretization scheme. Finally, in the case of a prescribed temperature profile, and under a strongly simplifying condition, we provide a continuous dependence result, yielding uniqueness of weak energy solutions.
Citation: |
R. Alessi
, J. Marigo
and S. Vidoli
, Gradient damage models coupled with plasticity and nucleation of cohesive cracks, Arch. Ration. Mech. Anal., 214 (2014)
, 575-615.
doi: 10.1007/s00205-014-0763-8.![]() ![]() ![]() |
|
R. Alessi
, J. Marigo
and S. Vidoli
, Gradient damage models coupled with plasticity: variational formulation and main properties, Mech. Mater., 80 (2015)
, 351-367.
doi: 10.1016/j.mechmat.2013.12.005.![]() ![]() |
|
S. Bartels
and T. Roubíček
, Thermoviscoplasticity at small strains, ZAMM Z. Angew. Math. Mech., 88 (2008)
, 735-754.
doi: 10.1002/zamm.200800042.![]() ![]() ![]() |
|
S. Bartels
and T. Roubíček
, Thermo-visco-elasticity with rate-independent plasticity in isotropic materials undergoing thermal expansion, ESAIM Math. Model. Numer. Anal., 45 (2011)
, 477-504.
doi: 10.1051/m2an/2010063.![]() ![]() ![]() |
|
E. Bonetti
and G. Bonfanti
, Well-posedness results for a model of damage in thermoviscoelastic materials, Ann. Inst. H. Poincaré Anal. Non Linéaire, 25 (2008)
, 1187-1208.
doi: 10.1016/j.anihpc.2007.05.009.![]() ![]() ![]() |
|
E. Bonetti
, E. Rocca
, R. Rossi
and M. Thomas
, A rate-independent gradient system in damage coupled with plasticity via structured strains, ESAIM: Proceedings and Surveys, 54 (2016)
, 54-69.
doi: 10.1051/proc/201654054.![]() ![]() ![]() |
|
M. Brokate
, P. Krejčí
and H. Schnabel
, On uniqueness in evolution quasivariational inequalities, J. Convex Anal., 11 (2004)
, 111-130.
![]() ![]() |
|
C. Castaing and M. Valadier,
Convex Analysis and Measurable Multifunctions, Lectures Notes in Mathematics, Vol. 580, Springer-Verlag, Berlin-New York, 1977.
![]() ![]() |
|
V. Crismale
, Globally stable quasistatic evolution for a coupled elastoplastic-damage model, ESAIM Control Optim. Calc. Var., 22 (2016)
, 883-912.
doi: 10.1051/cocv/2015037.![]() ![]() ![]() |
|
V. Crismale
, Globally stable quasistatic evolution for strain gradient plasticity coupled with damage, Ann. Mat. Pura Appl., 196 (2017)
, 641-685.
doi: 10.1007/s10231-016-0590-7.![]() ![]() ![]() |
|
V. Crismale and G. Lazzaroni, Viscous approximation of quasistatic evolutions for a coupled elastoplastic-damage model Calc. Var. Partial Differential Equations, 55 (2016), Art. 17, 54pp.
doi: 10.1007/s00526-015-0947-6.![]() ![]() ![]() |
|
G. Dal Maso
, A. DeSimone
and M. Mora
, Quasistatic evolution problems for linearly elastic-perfectly plastic materials, Arch. Rational Mech. Anal., 180 (2006)
, 237-291.
doi: 10.1007/s00205-005-0407-0.![]() ![]() ![]() |
|
E. Feireisl
, Mathematical theory of compressible, viscous, and heat conducting fluids, Comput. Math. Appl., 53 (2007)
, 461-490.
doi: 10.1016/j.camwa.2006.02.042.![]() ![]() ![]() |
|
E. Feireisl
, H. Petzeltová
and E. Rocca
, Existence of solutions to a phase transition model with microscopic movements, Math. Methods Appl. Sci., 32 (2009)
, 1345-1369.
doi: 10.1002/mma.1089.![]() ![]() ![]() |
|
M. Frémond, Non-Smooth Thermomechanics, Springer-Verlag, Berlin Heidelberg, 2002.
![]() |
|
G. Geymonat
and P. Suquet
, Functional spaces for Norton-Hoff materials, Math. Methods Appl. Sci., 8 (1986)
, 206-222.
doi: 10.1002/mma.1670080113.![]() ![]() ![]() |
|
C. Heinemann
and C. Kraus
, Existence of weak solutions for Cahn-Hilliard systems coupled with elasticity and damage, Adv. Math. Sci. Appl., 21 (2011)
, 321-359.
![]() ![]() |
|
C. Heinemann
and C. Kraus
, Existence results for diffuse interface models describing phase separation and damage, European J. Appl. Math., 24 (2013)
, 179-211.
doi: 10.1017/S095679251200037X.![]() ![]() ![]() |
|
C. Heinemann
and E. Rocca
, Damage processes in thermoviscoelastic materials with damage-dependent thermal expansion coefficients, Math. Methods Appl. Sci., 38 (2015)
, 4587-4612.
doi: 10.1002/mma.3393.![]() ![]() ![]() |
|
R. Herzog
, C. Meyer
and A. Stötzner
, Existence of solutions of a (sonsmooth) thermoviscoplastic model and sssociated optimal control problems, Nonlinear Anal. Real World Appl., 35 (2017)
, 75-101.
doi: 10.1016/j.nonrwa.2016.10.008.![]() ![]() ![]() |
|
A. D. Ioffe
, On lower semicontinuity of integral functionals. Ⅰ, SIAM J. Control Optimization, 15 (1977)
, 521-538.
doi: 10.1137/0315035.![]() ![]() ![]() |
|
R. Klein, Laser Welding of Plastics, John Wiley & Sons Inc., New York, 2012.
doi: 10.1002/9783527636969.![]() ![]() |
|
D. Knees
, R. Rossi
and C. Zanini
, A vanishing viscosity approach to a rate-independent damage model, Math. Models Methods Appl. Sci., 23 (2013)
, 565-616.
doi: 10.1142/S021820251250056X.![]() ![]() ![]() |
|
P. Krejčí
and J. Sprekels
, On a system of nonlinear PDEs with temperature-dependent hysteresis in one-dimensional thermoplasticity, J. Math. Anal. Appl., 209 (1997)
, 25-46.
doi: 10.1006/jmaa.1997.5304.![]() ![]() ![]() |
|
P. Krejčí
, J. Sprekels
and U. Stefanelli
, Phase-field models with hysteresis in one-dimensional thermoviscoplasticity, SIAM J. Math. Anal., 34 (2002)
, 409-434.
doi: 10.1137/S0036141001387604.![]() ![]() ![]() |
|
P. Krejčí
, J. Sprekels
and U. Stefanelli
, One-dimensional thermo-visco-plastic processes with hysteresis and phase transitions, Adv. Math. Sci. Appl., 13 (2003)
, 695-712.
![]() ![]() |
|
G. Lazzaroni, R. Rossi, M. Thomas and R. Toader, Rate-independent damage in thermo-viscoelastic materials with inertia, WIAS Preprint 2025.
![]() |
|
M. Marcus
and V. Mizel
, Every superposition operator mapping one Sobolev space into another is continuous, J. Funct. Anal., 33 (1979)
, 217-229.
doi: 10.1016/0022-1236(79)90113-7.![]() ![]() ![]() |
|
A. Mielke
and R. Rossi
, Existence and uniqueness results for a class of rate-independent hysteresis problems, Math. Models Methods Appl. Sci., 17 (2007)
, 81-123.
doi: 10.1142/S021820250700184X.![]() ![]() ![]() |
|
E. Rocca
and R. Rossi
, A degenerating PDE system for phase transitions and damage, Math. Models Methods Appl. Sci., 24 (2014)
, 1265-1341.
doi: 10.1142/S021820251450002X.![]() ![]() ![]() |
|
E. Rocca
and R. Rossi
, "Entropic" solutions to a thermodynamically consistent PDE system for phase transitions and damage, SIAM J. Math. Anal., 47 (2015)
, 2519-2586.
doi: 10.1137/140960803.![]() ![]() ![]() |
|
R. Rossi, From visco to perfect plasticity in thermoviscoelastic materials, Preprint arXiv: 1609.07232.
![]() |
|
T. Roubíček
, Thermodynamics of rate-independent processes in viscous solids at small strains, SIAM J. Math. Anal., 42 (2010)
, 256-297.
doi: 10.1137/080729992.![]() ![]() ![]() |
|
T. Roubíček,
Nonlinear Partial Differential Equations with Applications, vol. 153 of International Series of Numerical Mathematics, 2nd edition, Birkhäuser/Springer Basel AG, Basel, 2013.
doi: 10.1007/978-3-0348-0513-1.![]() ![]() |
|
T. Roubíček
, Thermodynamics of perfect plasticity, Discrete Contin. Dyn. Syst. Ser. S, 6 (2013)
, 193-214.
doi: 10.3934/dcdss.2013.6.193.![]() ![]() ![]() |
|
T. Roubíček
, O. Souček
and R. Vodička
, A model of rupturing lithospheric faults with reoccurring earthquakes, SIAM J. Appl. Math., 73 (2013)
, 1460-1488.
doi: 10.1137/120870396.![]() ![]() ![]() |
|
T. Roubíček
and G. Tomassetti
, Thermomechanics of damageable materials under diffusion: Modelling and analysis, Z. Angew. Math. Phys., 66 (2015)
, 3535-3572.
doi: 10.1007/s00033-015-0566-2.![]() ![]() ![]() |
|
T. Roubíček
and J. Valdman
, Perfect plasticity with damage and healing at small strains, its modeling, analysis, and computer implementation, SIAM J. Appl. Math., 76 (2016)
, 314-340.
doi: 10.1137/15M1019647.![]() ![]() ![]() |
|
J. Simon
, Compact sets in the space $L^p(0, T; B)$, Ann. Mat. Pura Appl., 146 (1987)
, 65-96.
doi: 10.1007/BF01762360.![]() ![]() ![]() |
|
F. Solombrino
, Quasistatic evolution problems for nonhomogeneous elastic plastic materials, J. Convex Anal., 16 (2009)
, 89-119.
![]() ![]() |