December  2017, 10(6): 1467-1485. doi: 10.3934/dcdss.2017076

Optimal control of a rate-independent evolution equation via viscous regularization

1. 

University of Vienna, Faculty of Mathematics, Oskar-Morgenstern-Platz 1, 1090 Wien, Austria

2. 

Istituto di Matematica Applicata e Tecnologie Informatiche E. Magenes - CNR, via Ferrata 1, 27100 Pavia, Italy

3. 

Institute of Mathematics, University of Würzburg, Emil-Fischer-Str. 40, 97074 Würzburg, Germany

4. 

Technische Universität Chemnitz, Faculty of Mathematics, 09107 Chemnitz, Germany

* Corresponding author: D. Wachsmuth.

Received  July 2016 Revised  October 2016 Published  June 2017

Fund Project: The second and third author were supported by DFG grants within the Priority Program SPP 1962 (Non-smooth and Complementarity-based Distributed Parameter Systems: Simulation and Hierarchical Optimization), which is gratefully acknowledged.

We study the optimal control of a rate-independent system that is driven by a convex quadratic energy. Since the associated solution mapping is non-smooth, the analysis of such control problems is challenging. In order to derive optimality conditions, we study the regularization of the problem via a smoothing of the dissipation potential and via the addition of some viscosity. The resulting regularized optimal control problem is analyzed. By driving the regularization parameter to zero, we obtain a necessary optimality condition for the original, non-smooth problem.

Citation: Ulisse Stefanelli, Daniel Wachsmuth, Gerd Wachsmuth. Optimal control of a rate-independent evolution equation via viscous regularization. Discrete and Continuous Dynamical Systems - S, 2017, 10 (6) : 1467-1485. doi: 10.3934/dcdss.2017076
References:
[1]

L. AdamJ. Outrata and T. Roubíček, Identification of some nonsmooth evolution systems with illustration on adhesive contacts at small strains, Optimization, (2015), 1-25. 

[2]

J.-F. BabadjianG. A. Francfort and M. G. Mora, Quasi-static evolution in nonassociative plasticity: The cap model, SIAM Journal on Mathematical Analysis, 44 (2012), 245-292.  doi: 10.1137/110823511.

[3]

M. Brokate, Optimale Steuerung Von Gewöhnlichen Differentialgleichungen mit Nichtlinearitäten vom Hysteresis-Typ Number 35 in Methoden und Verfahren der mathematischen Physik. Verlag Peter Lang, Frankfurt, 1987.

[4]

M. Brokate, Optimal control of ODE systems with hysteresis nonlinearities, In Trends in mathematical optimization (Irsee, 1986), volume 84 of Internat. Schriftenreihe Numer. Math. , pages 25–41. Birkhäuser, Basel, 1988.

[5]

M. Brokate and P. Krejčí, Optimal control of ODE systems involving a rate independent variational inequality, Discrete and Continuous Dynamical Systems. Series B. A Journal Bridging Mathematics and Sciences, 18 (2013), 331-348.  doi: 10.3934/dcdsb.2013.18.331.

[6]

M. Brokate and J. Sprekels, Hysteresis and Phase Transitions volume 121 of Applied Mathematical Sciences, Springer-Verlag, New York, 1996. doi: 10.1007/978-1-4612-4048-8.

[7]

F. Cagnetti, A vanishing viscosity approach to fracture growth in a cohesive zone model with prescribed crack path, Mathematical Models and Methods in Applied Sciences, 18 (2008), 1027-1071.  doi: 10.1142/S0218202508002942.

[8]

C. CastaingM. D. P. Monteiro Marques and P. Raynaud de Fitte, Some problems in optimal control governed by the sweeping process, Journal of Nonlinear and Convex Analysis. An International Journal, 15 (2014), 1043-1070. 

[9]

G. ColomboR. HenrionN. D. Hoang and B. S. Mordukhovich, Optimal control of the sweeping process, Dynamics of Continuous, Discrete & Impulsive Systems. Series B. Applications & Algorithms, 19 (2012), 117-159. 

[10]

G. ColomboR. HenrionN. D. Hoang and B. S. Mordukhovich, Discrete approximations of a controlled sweeping process, Set-Valued and Variational Analysis, 23 (2015), 69-86.  doi: 10.1007/s11228-014-0299-y.

[11]

G. ColomboR. HenrionNguyen D. Hoang and B. S. Mordukhovich, Optimal control of the sweeping process over polyhedral controlled sets, Journal of Differential Equations, 260 (2016), 3397-3447.  doi: 10.1016/j.jde.2015.10.039.

[12]

G. Dal MasoA. DeSimoneM. G. Mora and M. Morini, A vanishing viscosity approach to quasistatic evolution in plasticity with softening, Archive for Rational Mechanics and Analysis, 189 (2008), 469-544.  doi: 10.1007/s00205-008-0117-5.

[13]

G. Dal MasoA. DeSimone and F. Solombrino, Quasistatic evolution for Cam-Clay plasticity: A weak formulation via viscoplastic regularization and time rescaling, Calculus of Variations and Partial Differential Equations, 40 (2011), 125-181.  doi: 10.1007/s00526-010-0336-0.

[14]

A. DeSimone and R. D. James, A constrained theory of magnetoelasticity, J. Mech. Phys. Solids, 50 (2002), 283-320.  doi: 10.1016/S0022-5096(01)00050-3.

[15]

J. Diestel and J. J. Uhl, Vector Measures Mathematical Surveys and Monographs. American Mathematical Society, Providence, 1977.

[16]

M. A. Efendiev and A. Mielke, On the rate-independent limit of systems with dry friction and small viscosity, Journal of Convex Analysis, 13 (2006), 151-167. 

[17]

M. Eleuteri and L. Lussardi, Thermal control of a rate-independent model for permanent inelastic effects in shape memory materials, Evolution Equations and Control Theory, 3 (2014), 411-427.  doi: 10.3934/eect.2014.3.411.

[18]

M. EleuteriL. Lussardi and U. Stefanelli, Thermal control of the Souza-Auricchio model for shape memory alloys, Discrete and Continuous Dynamical Systems. Series S, 6 (2013), 369-386. 

[19]

A. Fiaschi, A Young measures approach to quasistatic evolution for a class of material models with nonconvex elastic energies, ESAIM. Control, Optimisation and Calculus of Variations, 15 (2009), 245-278.  doi: 10.1051/cocv:2008030.

[20]

G. A. Francfort and U. Stefanelli, Quasi-static evolution for the Armstrong-Frederick hardening-plasticity model, Applied Mathematics Research Express. AMRX, (2013), 297-344. 

[21]

H. Gajewski, K. Gröger and K. Zacharias, Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen Akademie-Verlag, Berlin, 1974.

[22]

R. HerzogC. Meyer and G. Wachsmuth, C-stationarity for optimal control of static plasticity with linear kinematic hardening, SIAM Journal on Control and Optimization, 50 (2012), 3052-3082.  doi: 10.1137/100809325.

[23]

R. HerzogC. Meyer and G. Wachsmuth, B-and strong stationarity for optimal control of static plasticity with hardening, SIAM Journal on Optimization, 23 (2013), 321-352.  doi: 10.1137/110821147.

[24]

R. Herzog, C. Meyer and G. Wachsmuth, Optimal control of elastoplastic processes: Analysis, algorithms, numerical analysis and applications, In Trends in PDE constrained optimization, volume 165 of Internat. Ser. Numer. Math. , pages 27–41. Birkhäuser/Springer, Cham, 2014. doi: 10.1007/978-3-319-05083-6_4.

[25]

D. KneesA. Mielke and C. Zanini, On the inviscid limit of a model for crack propagation, Mathematical Models and Methods in Applied Sciences, 18 (2008), 1529-1569.  doi: 10.1142/S0218202508003121.

[26]

D. KneesR. Rossi and C. Zanini, A vanishing viscosity approach to a rate-independent damage model, Mathematical Models and Methods in Applied Sciences, 23 (2013), 565-616.  doi: 10.1142/S021820251250056X.

[27]

D. KneesR. Rossi and C. Zanini, A quasilinear differential inclusion for viscous and rate-independent damage systems in non-smooth domains, Nonlinear Analysis. Real World Applications. An International Multidisciplinary Journal, 24 (2015), 126-162.  doi: 10.1016/j.nonrwa.2015.02.001.

[28]

D. KneesC. Zanini and A. Mielke, Crack growth in polyconvex materials, Physica D. Nonlinear Phenomena, 239 (2010), 1470-1484.  doi: 10.1016/j.physd.2009.02.008.

[29]

M. Kočvara and J. V. Outrata, On the modeling and control of delamination processes, In Control and boundary analysis, volume 240 of Lect. Notes Pure Appl. Math. , pages 169–187. Chapman & Hall/CRC, Boca Raton, FL, 2005.

[30]

P. Krejčí, Hysteresis, Convexity and Dissipation in Hyperbolic Equations volume 8 of GAKUTO International Series Mathematical Sciences and Applications, Gakkōtosho, 1996.

[31]

P. Krejčí and M. Liero, Rate independent Kurzweil processes, Applications of Mathematics, 54 (2009), 117-145.  doi: 10.1007/s10492-009-0009-5.

[32]

G. Lazzaroni and R. Toader, A model for crack propagation based on viscous approximation, Math. Models Methods Appl. Sci., 21 (2011), 2019-2047.  doi: 10.1142/S0218202511005647.

[33]

G. Lazzaroni and R. Toader, Some remarks on the viscous approximation of crack growth, Discrete Contin. Dyn. Syst. Ser. S, 6 (2013), 131-146.  doi: 10.3934/dcdss.2013.6.131.

[34]

A. MielkeR. Rossi and G. Savaré, Modeling solutions with jumps for rate-independent systems on metric spaces, Discrete Contin. Dyn. Syst., 25 (2009), 585-615.  doi: 10.3934/dcds.2009.25.585.

[35]

A. MielkeR. Rossi and G. Savaré, BV solutions and viscosity approximations of rate-independent systems, ESAIM Control Optim. Calc. Var., 18 (2012), 36-80.  doi: 10.1051/cocv/2010054.

[36]

A. Mielke and T. Roubíček, Rate-independent Systems volume 193 of Applied Mathematical Sciences, Springer, New York, 2015. Theory and application. doi: 10.1007/978-1-4939-2706-7.

[37]

A. Mielke and S. Zelik, On the vanishing-viscosity limit in parabolic systems with rate-independent dissipation terms, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 13 (2014), 67-135. 

[38]

H.-B. Mühlhaus and E. C. Aifantis, A variational principle for gradient plasticity, International Journal of Solids and Structures, 28 (1991), 845-857.  doi: 10.1016/0020-7683(91)90004-Y.

[39]

M. Negri, A comparative analysis on variational models for quasi-static brittle crack propagation, Advances in Calculus of Variations, 3 (2010), 149-212.  doi: 10.1515/ACV.2010.008.

[40]

F. Rindler, Optimal control for nonconvex rate-independent evolution processes, SIAM Journal on Control and Optimization, 47 (2008), 2773-2794.  doi: 10.1137/080718711.

[41]

F. Rindler, Approximation of rate-independent optimal control problems, SIAM Journal on Numerical Analysis, 47 (2009), 3884-3909.  doi: 10.1137/080744050.

[42]

T. Roubíček, Adhesive contact of visco-elastic bodies and defect measures arising by vanishing viscosity, SIAM Journal on Mathematical Analysis, 45 (2013), 101-126.  doi: 10.1137/12088286X.

[43]

F. Solombrino, Quasistatic evolution in perfect plasticity for general heterogeneous materials, Archive for Rational Mechanics and Analysis, 212 (2014), 283-330.  doi: 10.1007/s00205-013-0703-z.

[44]

U. Stefanelli, Magnetic control of magnetic shape-memory crystals, Phys. B, 407 (2012), 1316-1321.  doi: 10.1016/j.physb.2011.06.043.

[45]

R. Toader and C. Zanini, An artificial viscosity approach to quasistatic crack growth, Bollettino della Unione Matematica Italiana. Serie 9, 2 (2009), 1-35. 

[46]

A. Visintin, Differential Models of Hysteresis volume 111 of Applied Mathematical Sciences, Springer-Verlag, Berlin, 1994. doi: 10.1007/978-3-662-11557-2.

[47]

G. Wachsmuth, Optimal control of quasistatic plasticity with linear kinematic hardening, part Ⅰ: Existence and discretization in time, SIAM Journal on Control and Optimization, 50 (2012), 2836-2861.  doi: 10.1137/110839187.

[48]

G. Wachsmuth, Optimal control of quasistatic plasticity with linear kinematic hardening, part Ⅱ: Regularization and differentiability, Zeitschrift für Analysis und ihre Anwendungen, 34 (2015), 391-418.  doi: 10.4171/ZAA/1546.

[49]

G. Wachsmuth, Optimal control of quasistatic plasticity with linear kinematic hardening Ⅲ: Optimality conditions, Zeitschrift für Analysis und ihre Anwendungen, 35 (2016), 81-118.  doi: 10.4171/ZAA/1556.

show all references

References:
[1]

L. AdamJ. Outrata and T. Roubíček, Identification of some nonsmooth evolution systems with illustration on adhesive contacts at small strains, Optimization, (2015), 1-25. 

[2]

J.-F. BabadjianG. A. Francfort and M. G. Mora, Quasi-static evolution in nonassociative plasticity: The cap model, SIAM Journal on Mathematical Analysis, 44 (2012), 245-292.  doi: 10.1137/110823511.

[3]

M. Brokate, Optimale Steuerung Von Gewöhnlichen Differentialgleichungen mit Nichtlinearitäten vom Hysteresis-Typ Number 35 in Methoden und Verfahren der mathematischen Physik. Verlag Peter Lang, Frankfurt, 1987.

[4]

M. Brokate, Optimal control of ODE systems with hysteresis nonlinearities, In Trends in mathematical optimization (Irsee, 1986), volume 84 of Internat. Schriftenreihe Numer. Math. , pages 25–41. Birkhäuser, Basel, 1988.

[5]

M. Brokate and P. Krejčí, Optimal control of ODE systems involving a rate independent variational inequality, Discrete and Continuous Dynamical Systems. Series B. A Journal Bridging Mathematics and Sciences, 18 (2013), 331-348.  doi: 10.3934/dcdsb.2013.18.331.

[6]

M. Brokate and J. Sprekels, Hysteresis and Phase Transitions volume 121 of Applied Mathematical Sciences, Springer-Verlag, New York, 1996. doi: 10.1007/978-1-4612-4048-8.

[7]

F. Cagnetti, A vanishing viscosity approach to fracture growth in a cohesive zone model with prescribed crack path, Mathematical Models and Methods in Applied Sciences, 18 (2008), 1027-1071.  doi: 10.1142/S0218202508002942.

[8]

C. CastaingM. D. P. Monteiro Marques and P. Raynaud de Fitte, Some problems in optimal control governed by the sweeping process, Journal of Nonlinear and Convex Analysis. An International Journal, 15 (2014), 1043-1070. 

[9]

G. ColomboR. HenrionN. D. Hoang and B. S. Mordukhovich, Optimal control of the sweeping process, Dynamics of Continuous, Discrete & Impulsive Systems. Series B. Applications & Algorithms, 19 (2012), 117-159. 

[10]

G. ColomboR. HenrionN. D. Hoang and B. S. Mordukhovich, Discrete approximations of a controlled sweeping process, Set-Valued and Variational Analysis, 23 (2015), 69-86.  doi: 10.1007/s11228-014-0299-y.

[11]

G. ColomboR. HenrionNguyen D. Hoang and B. S. Mordukhovich, Optimal control of the sweeping process over polyhedral controlled sets, Journal of Differential Equations, 260 (2016), 3397-3447.  doi: 10.1016/j.jde.2015.10.039.

[12]

G. Dal MasoA. DeSimoneM. G. Mora and M. Morini, A vanishing viscosity approach to quasistatic evolution in plasticity with softening, Archive for Rational Mechanics and Analysis, 189 (2008), 469-544.  doi: 10.1007/s00205-008-0117-5.

[13]

G. Dal MasoA. DeSimone and F. Solombrino, Quasistatic evolution for Cam-Clay plasticity: A weak formulation via viscoplastic regularization and time rescaling, Calculus of Variations and Partial Differential Equations, 40 (2011), 125-181.  doi: 10.1007/s00526-010-0336-0.

[14]

A. DeSimone and R. D. James, A constrained theory of magnetoelasticity, J. Mech. Phys. Solids, 50 (2002), 283-320.  doi: 10.1016/S0022-5096(01)00050-3.

[15]

J. Diestel and J. J. Uhl, Vector Measures Mathematical Surveys and Monographs. American Mathematical Society, Providence, 1977.

[16]

M. A. Efendiev and A. Mielke, On the rate-independent limit of systems with dry friction and small viscosity, Journal of Convex Analysis, 13 (2006), 151-167. 

[17]

M. Eleuteri and L. Lussardi, Thermal control of a rate-independent model for permanent inelastic effects in shape memory materials, Evolution Equations and Control Theory, 3 (2014), 411-427.  doi: 10.3934/eect.2014.3.411.

[18]

M. EleuteriL. Lussardi and U. Stefanelli, Thermal control of the Souza-Auricchio model for shape memory alloys, Discrete and Continuous Dynamical Systems. Series S, 6 (2013), 369-386. 

[19]

A. Fiaschi, A Young measures approach to quasistatic evolution for a class of material models with nonconvex elastic energies, ESAIM. Control, Optimisation and Calculus of Variations, 15 (2009), 245-278.  doi: 10.1051/cocv:2008030.

[20]

G. A. Francfort and U. Stefanelli, Quasi-static evolution for the Armstrong-Frederick hardening-plasticity model, Applied Mathematics Research Express. AMRX, (2013), 297-344. 

[21]

H. Gajewski, K. Gröger and K. Zacharias, Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen Akademie-Verlag, Berlin, 1974.

[22]

R. HerzogC. Meyer and G. Wachsmuth, C-stationarity for optimal control of static plasticity with linear kinematic hardening, SIAM Journal on Control and Optimization, 50 (2012), 3052-3082.  doi: 10.1137/100809325.

[23]

R. HerzogC. Meyer and G. Wachsmuth, B-and strong stationarity for optimal control of static plasticity with hardening, SIAM Journal on Optimization, 23 (2013), 321-352.  doi: 10.1137/110821147.

[24]

R. Herzog, C. Meyer and G. Wachsmuth, Optimal control of elastoplastic processes: Analysis, algorithms, numerical analysis and applications, In Trends in PDE constrained optimization, volume 165 of Internat. Ser. Numer. Math. , pages 27–41. Birkhäuser/Springer, Cham, 2014. doi: 10.1007/978-3-319-05083-6_4.

[25]

D. KneesA. Mielke and C. Zanini, On the inviscid limit of a model for crack propagation, Mathematical Models and Methods in Applied Sciences, 18 (2008), 1529-1569.  doi: 10.1142/S0218202508003121.

[26]

D. KneesR. Rossi and C. Zanini, A vanishing viscosity approach to a rate-independent damage model, Mathematical Models and Methods in Applied Sciences, 23 (2013), 565-616.  doi: 10.1142/S021820251250056X.

[27]

D. KneesR. Rossi and C. Zanini, A quasilinear differential inclusion for viscous and rate-independent damage systems in non-smooth domains, Nonlinear Analysis. Real World Applications. An International Multidisciplinary Journal, 24 (2015), 126-162.  doi: 10.1016/j.nonrwa.2015.02.001.

[28]

D. KneesC. Zanini and A. Mielke, Crack growth in polyconvex materials, Physica D. Nonlinear Phenomena, 239 (2010), 1470-1484.  doi: 10.1016/j.physd.2009.02.008.

[29]

M. Kočvara and J. V. Outrata, On the modeling and control of delamination processes, In Control and boundary analysis, volume 240 of Lect. Notes Pure Appl. Math. , pages 169–187. Chapman & Hall/CRC, Boca Raton, FL, 2005.

[30]

P. Krejčí, Hysteresis, Convexity and Dissipation in Hyperbolic Equations volume 8 of GAKUTO International Series Mathematical Sciences and Applications, Gakkōtosho, 1996.

[31]

P. Krejčí and M. Liero, Rate independent Kurzweil processes, Applications of Mathematics, 54 (2009), 117-145.  doi: 10.1007/s10492-009-0009-5.

[32]

G. Lazzaroni and R. Toader, A model for crack propagation based on viscous approximation, Math. Models Methods Appl. Sci., 21 (2011), 2019-2047.  doi: 10.1142/S0218202511005647.

[33]

G. Lazzaroni and R. Toader, Some remarks on the viscous approximation of crack growth, Discrete Contin. Dyn. Syst. Ser. S, 6 (2013), 131-146.  doi: 10.3934/dcdss.2013.6.131.

[34]

A. MielkeR. Rossi and G. Savaré, Modeling solutions with jumps for rate-independent systems on metric spaces, Discrete Contin. Dyn. Syst., 25 (2009), 585-615.  doi: 10.3934/dcds.2009.25.585.

[35]

A. MielkeR. Rossi and G. Savaré, BV solutions and viscosity approximations of rate-independent systems, ESAIM Control Optim. Calc. Var., 18 (2012), 36-80.  doi: 10.1051/cocv/2010054.

[36]

A. Mielke and T. Roubíček, Rate-independent Systems volume 193 of Applied Mathematical Sciences, Springer, New York, 2015. Theory and application. doi: 10.1007/978-1-4939-2706-7.

[37]

A. Mielke and S. Zelik, On the vanishing-viscosity limit in parabolic systems with rate-independent dissipation terms, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 13 (2014), 67-135. 

[38]

H.-B. Mühlhaus and E. C. Aifantis, A variational principle for gradient plasticity, International Journal of Solids and Structures, 28 (1991), 845-857.  doi: 10.1016/0020-7683(91)90004-Y.

[39]

M. Negri, A comparative analysis on variational models for quasi-static brittle crack propagation, Advances in Calculus of Variations, 3 (2010), 149-212.  doi: 10.1515/ACV.2010.008.

[40]

F. Rindler, Optimal control for nonconvex rate-independent evolution processes, SIAM Journal on Control and Optimization, 47 (2008), 2773-2794.  doi: 10.1137/080718711.

[41]

F. Rindler, Approximation of rate-independent optimal control problems, SIAM Journal on Numerical Analysis, 47 (2009), 3884-3909.  doi: 10.1137/080744050.

[42]

T. Roubíček, Adhesive contact of visco-elastic bodies and defect measures arising by vanishing viscosity, SIAM Journal on Mathematical Analysis, 45 (2013), 101-126.  doi: 10.1137/12088286X.

[43]

F. Solombrino, Quasistatic evolution in perfect plasticity for general heterogeneous materials, Archive for Rational Mechanics and Analysis, 212 (2014), 283-330.  doi: 10.1007/s00205-013-0703-z.

[44]

U. Stefanelli, Magnetic control of magnetic shape-memory crystals, Phys. B, 407 (2012), 1316-1321.  doi: 10.1016/j.physb.2011.06.043.

[45]

R. Toader and C. Zanini, An artificial viscosity approach to quasistatic crack growth, Bollettino della Unione Matematica Italiana. Serie 9, 2 (2009), 1-35. 

[46]

A. Visintin, Differential Models of Hysteresis volume 111 of Applied Mathematical Sciences, Springer-Verlag, Berlin, 1994. doi: 10.1007/978-3-662-11557-2.

[47]

G. Wachsmuth, Optimal control of quasistatic plasticity with linear kinematic hardening, part Ⅰ: Existence and discretization in time, SIAM Journal on Control and Optimization, 50 (2012), 2836-2861.  doi: 10.1137/110839187.

[48]

G. Wachsmuth, Optimal control of quasistatic plasticity with linear kinematic hardening, part Ⅱ: Regularization and differentiability, Zeitschrift für Analysis und ihre Anwendungen, 34 (2015), 391-418.  doi: 10.4171/ZAA/1546.

[49]

G. Wachsmuth, Optimal control of quasistatic plasticity with linear kinematic hardening Ⅲ: Optimality conditions, Zeitschrift für Analysis und ihre Anwendungen, 35 (2016), 81-118.  doi: 10.4171/ZAA/1556.

[1]

Sofia O. Lopes, Fernando A. C. C. Fontes, Maria do Rosário de Pinho. On constraint qualifications for nondegenerate necessary conditions of optimality applied to optimal control problems. Discrete and Continuous Dynamical Systems, 2011, 29 (2) : 559-575. doi: 10.3934/dcds.2011.29.559

[2]

Jianxiong Ye, An Li. Necessary optimality conditions for nonautonomous optimal control problems and its applications to bilevel optimal control. Journal of Industrial and Management Optimization, 2019, 15 (3) : 1399-1419. doi: 10.3934/jimo.2018101

[3]

Shahlar F. Maharramov. Necessary optimality conditions for switching control problems. Journal of Industrial and Management Optimization, 2010, 6 (1) : 47-55. doi: 10.3934/jimo.2010.6.47

[4]

Riccarda Rossi, Ulisse Stefanelli, Marita Thomas. Rate-independent evolution of sets. Discrete and Continuous Dynamical Systems - S, 2021, 14 (1) : 89-119. doi: 10.3934/dcdss.2020304

[5]

Gianni Dal Maso, Alexander Mielke, Ulisse Stefanelli. Preface: Rate-independent evolutions. Discrete and Continuous Dynamical Systems - S, 2013, 6 (1) : i-ii. doi: 10.3934/dcdss.2013.6.1i

[6]

Martin Kružík, Johannes Zimmer. Rate-independent processes with linear growth energies and time-dependent boundary conditions. Discrete and Continuous Dynamical Systems - S, 2012, 5 (3) : 591-604. doi: 10.3934/dcdss.2012.5.591

[7]

T. J. Sullivan, M. Koslowski, F. Theil, Michael Ortiz. Thermalization of rate-independent processes by entropic regularization. Discrete and Continuous Dynamical Systems - S, 2013, 6 (1) : 215-233. doi: 10.3934/dcdss.2013.6.215

[8]

Augusto Visintin. Structural stability of rate-independent nonpotential flows. Discrete and Continuous Dynamical Systems - S, 2013, 6 (1) : 257-275. doi: 10.3934/dcdss.2013.6.257

[9]

Michela Eleuteri, Luca Lussardi. Thermal control of a rate-independent model for permanent inelastic effects in shape memory materials. Evolution Equations and Control Theory, 2014, 3 (3) : 411-427. doi: 10.3934/eect.2014.3.411

[10]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control and Related Fields, 2021, 11 (4) : 739-769. doi: 10.3934/mcrf.2020045

[11]

Francis Clarke. A general theorem on necessary conditions in optimal control. Discrete and Continuous Dynamical Systems, 2011, 29 (2) : 485-503. doi: 10.3934/dcds.2011.29.485

[12]

Martin Brokate, Pavel Krejčí. Optimal control of ODE systems involving a rate independent variational inequality. Discrete and Continuous Dynamical Systems - B, 2013, 18 (2) : 331-348. doi: 10.3934/dcdsb.2013.18.331

[13]

Daniele Davino, Ciro Visone. Rate-independent memory in magneto-elastic materials. Discrete and Continuous Dynamical Systems - S, 2015, 8 (4) : 649-691. doi: 10.3934/dcdss.2015.8.649

[14]

Alexander Mielke, Riccarda Rossi, Giuseppe Savaré. Modeling solutions with jumps for rate-independent systems on metric spaces. Discrete and Continuous Dynamical Systems, 2009, 25 (2) : 585-615. doi: 10.3934/dcds.2009.25.585

[15]

Martin Heida, Alexander Mielke. Averaging of time-periodic dissipation potentials in rate-independent processes. Discrete and Continuous Dynamical Systems - S, 2017, 10 (6) : 1303-1327. doi: 10.3934/dcdss.2017070

[16]

Michela Eleuteri, Luca Lussardi, Ulisse Stefanelli. A rate-independent model for permanent inelastic effects in shape memory materials. Networks and Heterogeneous Media, 2011, 6 (1) : 145-165. doi: 10.3934/nhm.2011.6.145

[17]

Stefano Bosia, Michela Eleuteri, Elisabetta Rocca, Enrico Valdinoci. Preface: Special issue on rate-independent evolutions and hysteresis modelling. Discrete and Continuous Dynamical Systems - S, 2015, 8 (4) : i-i. doi: 10.3934/dcdss.2015.8.4i

[18]

Ciro D'Apice, Olha P. Kupenko, Rosanna Manzo. On boundary optimal control problem for an arterial system: First-order optimality conditions. Networks and Heterogeneous Media, 2018, 13 (4) : 585-607. doi: 10.3934/nhm.2018027

[19]

Vincenzo Basco, Piermarco Cannarsa, Hélène Frankowska. Necessary conditions for infinite horizon optimal control problems with state constraints. Mathematical Control and Related Fields, 2018, 8 (3&4) : 535-555. doi: 10.3934/mcrf.2018022

[20]

Stepan Sorokin, Maxim Staritsyn. Feedback necessary optimality conditions for a class of terminally constrained state-linear variational problems inspired by impulsive control. Numerical Algebra, Control and Optimization, 2017, 7 (2) : 201-210. doi: 10.3934/naco.2017014

2021 Impact Factor: 1.865

Metrics

  • PDF downloads (151)
  • HTML views (130)
  • Cited by (2)

[Back to Top]