We study the optimal control of a rate-independent system that is driven by a convex quadratic energy. Since the associated solution mapping is non-smooth, the analysis of such control problems is challenging. In order to derive optimality conditions, we study the regularization of the problem via a smoothing of the dissipation potential and via the addition of some viscosity. The resulting regularized optimal control problem is analyzed. By driving the regularization parameter to zero, we obtain a necessary optimality condition for the original, non-smooth problem.
Citation: |
L. Adam
, J. Outrata
and T. Roubíček
, Identification of some nonsmooth evolution systems with illustration on adhesive contacts at small strains, Optimization, (2015)
, 1-25.
![]() |
|
J.-F. Babadjian
, G. A. Francfort
and M. G. Mora
, Quasi-static evolution in nonassociative plasticity: The cap model, SIAM Journal on Mathematical Analysis, 44 (2012)
, 245-292.
doi: 10.1137/110823511.![]() ![]() ![]() |
|
M. Brokate,
Optimale Steuerung Von Gewöhnlichen Differentialgleichungen mit Nichtlinearitäten vom Hysteresis-Typ Number 35 in Methoden und Verfahren der mathematischen Physik. Verlag Peter Lang, Frankfurt, 1987.
![]() ![]() |
|
M. Brokate, Optimal control of ODE systems with hysteresis nonlinearities, In Trends in
mathematical optimization (Irsee, 1986), volume 84 of Internat. Schriftenreihe Numer. Math. ,
pages 25–41. Birkhäuser, Basel, 1988.
![]() |
|
M. Brokate
and P. Krejčí
, Optimal control of ODE systems involving a rate independent variational inequality, Discrete and Continuous Dynamical Systems. Series B. A Journal Bridging Mathematics and Sciences, 18 (2013)
, 331-348.
doi: 10.3934/dcdsb.2013.18.331.![]() ![]() ![]() |
|
M. Brokate and J. Sprekels,
Hysteresis and Phase Transitions volume 121 of Applied Mathematical Sciences, Springer-Verlag, New York, 1996.
doi: 10.1007/978-1-4612-4048-8.![]() ![]() ![]() |
|
F. Cagnetti
, A vanishing viscosity approach to fracture growth in a cohesive zone model with prescribed crack path, Mathematical Models and Methods in Applied Sciences, 18 (2008)
, 1027-1071.
doi: 10.1142/S0218202508002942.![]() ![]() ![]() |
|
C. Castaing
, M. D. P. Monteiro Marques
and P. Raynaud de Fitte
, Some problems in optimal control governed by the sweeping process, Journal of Nonlinear and Convex Analysis. An International Journal, 15 (2014)
, 1043-1070.
![]() ![]() |
|
G. Colombo
, R. Henrion
, N. D. Hoang
and B. S. Mordukhovich
, Optimal control of the sweeping process, Dynamics of Continuous, Discrete & Impulsive Systems. Series B. Applications & Algorithms, 19 (2012)
, 117-159.
![]() ![]() |
|
G. Colombo
, R. Henrion
, N. D. Hoang
and B. S. Mordukhovich
, Discrete approximations of a controlled sweeping process, Set-Valued and Variational Analysis, 23 (2015)
, 69-86.
doi: 10.1007/s11228-014-0299-y.![]() ![]() ![]() |
|
G. Colombo
, R. Henrion
, Nguyen D. Hoang
and B. S. Mordukhovich
, Optimal control of the sweeping process over polyhedral controlled sets, Journal of Differential Equations, 260 (2016)
, 3397-3447.
doi: 10.1016/j.jde.2015.10.039.![]() ![]() ![]() |
|
G. Dal Maso
, A. DeSimone
, M. G. Mora
and M. Morini
, A vanishing viscosity approach to quasistatic evolution in plasticity with softening, Archive for Rational Mechanics and Analysis, 189 (2008)
, 469-544.
doi: 10.1007/s00205-008-0117-5.![]() ![]() ![]() |
|
G. Dal Maso
, A. DeSimone
and F. Solombrino
, Quasistatic evolution for Cam-Clay plasticity: A weak formulation via viscoplastic regularization and time rescaling, Calculus of Variations and Partial Differential Equations, 40 (2011)
, 125-181.
doi: 10.1007/s00526-010-0336-0.![]() ![]() ![]() |
|
A. DeSimone
and R. D. James
, A constrained theory of magnetoelasticity, J. Mech. Phys. Solids, 50 (2002)
, 283-320.
doi: 10.1016/S0022-5096(01)00050-3.![]() ![]() ![]() |
|
J. Diestel and J. J. Uhl,
Vector Measures Mathematical Surveys and Monographs. American Mathematical Society, Providence, 1977.
![]() ![]() |
|
M. A. Efendiev
and A. Mielke
, On the rate-independent limit of systems with dry friction and small viscosity, Journal of Convex Analysis, 13 (2006)
, 151-167.
![]() ![]() |
|
M. Eleuteri
and L. Lussardi
, Thermal control of a rate-independent model for permanent inelastic effects in shape memory materials, Evolution Equations and Control Theory, 3 (2014)
, 411-427.
doi: 10.3934/eect.2014.3.411.![]() ![]() ![]() |
|
M. Eleuteri
, L. Lussardi
and U. Stefanelli
, Thermal control of the Souza-Auricchio model for shape memory alloys, Discrete and Continuous Dynamical Systems. Series S, 6 (2013)
, 369-386.
![]() ![]() |
|
A. Fiaschi
, A Young measures approach to quasistatic evolution for a class of material models with nonconvex elastic energies, ESAIM. Control, Optimisation and Calculus of Variations, 15 (2009)
, 245-278.
doi: 10.1051/cocv:2008030.![]() ![]() ![]() |
|
G. A. Francfort
and U. Stefanelli
, Quasi-static evolution for the Armstrong-Frederick hardening-plasticity model, Applied Mathematics Research Express. AMRX, (2013)
, 297-344.
![]() ![]() |
|
H. Gajewski, K. Gröger and K. Zacharias,
Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen Akademie-Verlag, Berlin, 1974.
![]() ![]() |
|
R. Herzog
, C. Meyer
and G. Wachsmuth
, C-stationarity for optimal control of static plasticity with linear kinematic hardening, SIAM Journal on Control and Optimization, 50 (2012)
, 3052-3082.
doi: 10.1137/100809325.![]() ![]() ![]() |
|
R. Herzog
, C. Meyer
and G. Wachsmuth
, B-and strong stationarity for optimal control of static plasticity with hardening, SIAM Journal on Optimization, 23 (2013)
, 321-352.
doi: 10.1137/110821147.![]() ![]() ![]() |
|
R. Herzog, C. Meyer and G. Wachsmuth, Optimal control of elastoplastic processes: Analysis, algorithms, numerical analysis and applications, In Trends in PDE constrained optimization, volume 165 of Internat. Ser. Numer. Math. , pages 27–41. Birkhäuser/Springer, Cham, 2014.
doi: 10.1007/978-3-319-05083-6_4.![]() ![]() ![]() |
|
D. Knees
, A. Mielke
and C. Zanini
, On the inviscid limit of a model for crack propagation, Mathematical Models and Methods in Applied Sciences, 18 (2008)
, 1529-1569.
doi: 10.1142/S0218202508003121.![]() ![]() ![]() |
|
D. Knees
, R. Rossi
and C. Zanini
, A vanishing viscosity approach to a rate-independent damage model, Mathematical Models and Methods in Applied Sciences, 23 (2013)
, 565-616.
doi: 10.1142/S021820251250056X.![]() ![]() ![]() |
|
D. Knees
, R. Rossi
and C. Zanini
, A quasilinear differential inclusion for viscous and rate-independent damage systems in non-smooth domains, Nonlinear Analysis. Real World Applications. An International Multidisciplinary Journal, 24 (2015)
, 126-162.
doi: 10.1016/j.nonrwa.2015.02.001.![]() ![]() ![]() |
|
D. Knees
, C. Zanini
and A. Mielke
, Crack growth in polyconvex materials, Physica D. Nonlinear Phenomena, 239 (2010)
, 1470-1484.
doi: 10.1016/j.physd.2009.02.008.![]() ![]() ![]() |
|
M. Kočvara and J. V. Outrata, On the modeling and control of delamination processes, In
Control and boundary analysis, volume 240 of Lect. Notes Pure Appl. Math. , pages 169–187.
Chapman & Hall/CRC, Boca Raton, FL, 2005.
![]() ![]() |
|
P. Krejčí,
Hysteresis, Convexity and Dissipation in Hyperbolic Equations volume 8 of GAKUTO International Series Mathematical Sciences and Applications, Gakkōtosho, 1996.
![]() ![]() |
|
P. Krejčí
and M. Liero
, Rate independent Kurzweil processes, Applications of Mathematics, 54 (2009)
, 117-145.
doi: 10.1007/s10492-009-0009-5.![]() ![]() ![]() |
|
G. Lazzaroni
and R. Toader
, A model for crack propagation based on viscous approximation, Math. Models Methods Appl. Sci., 21 (2011)
, 2019-2047.
doi: 10.1142/S0218202511005647.![]() ![]() ![]() |
|
G. Lazzaroni
and R. Toader
, Some remarks on the viscous approximation of crack growth, Discrete Contin. Dyn. Syst. Ser. S, 6 (2013)
, 131-146.
doi: 10.3934/dcdss.2013.6.131.![]() ![]() ![]() |
|
A. Mielke
, R. Rossi
and G. Savaré
, Modeling solutions with jumps for rate-independent systems on metric spaces, Discrete Contin. Dyn. Syst., 25 (2009)
, 585-615.
doi: 10.3934/dcds.2009.25.585.![]() ![]() ![]() |
|
A. Mielke
, R. Rossi
and G. Savaré
, BV solutions and viscosity approximations of rate-independent systems, ESAIM Control Optim. Calc. Var., 18 (2012)
, 36-80.
doi: 10.1051/cocv/2010054.![]() ![]() ![]() |
|
A. Mielke and T. Roubíček,
Rate-independent Systems volume 193 of Applied Mathematical Sciences, Springer, New York, 2015. Theory and application.
doi: 10.1007/978-1-4939-2706-7.![]() ![]() ![]() |
|
A. Mielke
and S. Zelik
, On the vanishing-viscosity limit in parabolic systems with rate-independent dissipation terms, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 13 (2014)
, 67-135.
![]() ![]() |
|
H.-B. Mühlhaus
and E. C. Aifantis
, A variational principle for gradient plasticity, International Journal of Solids and Structures, 28 (1991)
, 845-857.
doi: 10.1016/0020-7683(91)90004-Y.![]() ![]() ![]() |
|
M. Negri
, A comparative analysis on variational models for quasi-static brittle crack propagation, Advances in Calculus of Variations, 3 (2010)
, 149-212.
doi: 10.1515/ACV.2010.008.![]() ![]() ![]() |
|
F. Rindler
, Optimal control for nonconvex rate-independent evolution processes, SIAM Journal on Control and Optimization, 47 (2008)
, 2773-2794.
doi: 10.1137/080718711.![]() ![]() ![]() |
|
F. Rindler
, Approximation of rate-independent optimal control problems, SIAM Journal on Numerical Analysis, 47 (2009)
, 3884-3909.
doi: 10.1137/080744050.![]() ![]() ![]() |
|
T. Roubíček
, Adhesive contact of visco-elastic bodies and defect measures arising by vanishing viscosity, SIAM Journal on Mathematical Analysis, 45 (2013)
, 101-126.
doi: 10.1137/12088286X.![]() ![]() ![]() |
|
F. Solombrino
, Quasistatic evolution in perfect plasticity for general heterogeneous materials, Archive for Rational Mechanics and Analysis, 212 (2014)
, 283-330.
doi: 10.1007/s00205-013-0703-z.![]() ![]() ![]() |
|
U. Stefanelli
, Magnetic control of magnetic shape-memory crystals, Phys. B, 407 (2012)
, 1316-1321.
doi: 10.1016/j.physb.2011.06.043.![]() ![]() |
|
R. Toader
and C. Zanini
, An artificial viscosity approach to quasistatic crack growth, Bollettino della Unione Matematica Italiana. Serie 9, 2 (2009)
, 1-35.
![]() ![]() |
|
A. Visintin,
Differential Models of Hysteresis volume 111 of Applied Mathematical Sciences, Springer-Verlag, Berlin, 1994.
doi: 10.1007/978-3-662-11557-2.![]() ![]() ![]() |
|
G. Wachsmuth
, Optimal control of quasistatic plasticity with linear kinematic hardening, part Ⅰ: Existence and discretization in time, SIAM Journal on Control and Optimization, 50 (2012)
, 2836-2861.
doi: 10.1137/110839187.![]() ![]() ![]() |
|
G. Wachsmuth
, Optimal control of quasistatic plasticity with linear kinematic hardening, part Ⅱ: Regularization and differentiability, Zeitschrift für Analysis und ihre Anwendungen, 34 (2015)
, 391-418.
doi: 10.4171/ZAA/1546.![]() ![]() ![]() |
|
G. Wachsmuth
, Optimal control of quasistatic plasticity with linear kinematic hardening Ⅲ: Optimality conditions, Zeitschrift für Analysis und ihre Anwendungen, 35 (2016)
, 81-118.
doi: 10.4171/ZAA/1556.![]() ![]() ![]() |