We study a model for the rate-independent evolution of cohesive zone delamination in a visco-elastic solid, also exposed to dynamics effects. The main feature of this model, inspired by [
Due to the presence of multivalued and unbounded operators featuring non-penetration and the 'memory'-constraint in the strong formulation of the problem, we prove existence of a weaker notion of solution, known as semistable energetic solution, pioneered in [
Citation: |
L. Adam
, J. Outrata
and T. Roubíček
, Identification of some nonsmooth evolution systems with illustration on adhesive contacts at small strains, A Journal of Mathematical Programming and Operations Research Latest Articles, (2015)
, 1-25.
doi: 10.1080/02331934.2015.1111364.![]() ![]() |
|
R. Alessi
, J.-J. Marigo
and S. Vidoli
, Gradient damage models coupled with plasticity and nucleation of cohesive cracks, Arch. Ration. Mech. Anal., 214 (2014)
, 575-615.
doi: 10.1007/s00205-014-0763-8.![]() ![]() ![]() |
|
S. Almi, Energy release rate and quasistatic evolution via vanishing viscosity in a cohesive fracture model with an activation threshold,
ESAIM: Control Optim. Calc. Var. Published online.
![]() |
|
M. Artina
, F. Cagnetti
, M. Fornasier
and F. Solombrino
, Linearly constrained evolutions of critical points and an application to cohesive fractures, Math. Models Methods Appl. Sci., 27 (2017)
, 231-290.
doi: 10.1142/S0218202517500014.![]() ![]() ![]() |
|
H. Attouch,
Variational Convergence for Functions and Operators Applicable Mathematics Series, Pitman (Advanced Publishing Program), Boston, MA, 1984.
![]() ![]() |
|
G. Barenblatt
, The mathematical theory of equilibrium of cracks in brittle fracture, Adv. Appl. Mech., 7 (1962)
, 55-129.
![]() ![]() |
|
E. Bonetti
, G. Bonfanti
and R. Rossi
, Global existence for a contact problem with adhesion, Math. Meth. Appl. Sci., 31 (2008)
, 1029-1064.
doi: 10.1002/mma.957.![]() ![]() ![]() |
|
E. Bonetti
, G. Bonfanti
and R. Rossi
, Thermal effects in adhesive contact: Modelling and analysis, Nonlinearity, 22 (2009)
, 2697-2731.
doi: 10.1088/0951-7715/22/11/007.![]() ![]() ![]() |
|
E. Bonetti, E. Rocca, R. Scala and G. Schimperna, On the strongly damped wave equation with constraint,
WIAS-Preprint 2094.
![]() |
|
G. Bouchitté
, A. Braides
and G. Buttazzo
, Relaxation results for some free discontinuity problems, J. Reine Angew. Math., 458 (1995)
, 1-18.
doi: 10.1515/crll.1995.458.1.![]() ![]() ![]() |
|
H. Brézis,
Opérateurs Maximaux Monotones et Semi-groupes de Contractions Dans Les Espaces de Hilbert North-Holland Publishing Co. , Amsterdam-London; American Elsevier Publishing Co. , Inc. , New York, 1973, North-Holland Mathematics Studies, No. 5. Notas de Matemática (50).
![]() |
|
F. Cagnetti
, A vanishing viscosity approach to fracture growth in a cohesive zone model with prescribed crack path, Math. Models Methods Appl. Sci., 18 (2008)
, 1027-1071.
doi: 10.1142/S0218202508002942.![]() ![]() ![]() |
|
F. Cagnetti
and R. Toader
, Quasistatic crack evolution for a cohesive zone model with different response to loading and unloading: A Young measures approach, ESAIM Control Optim. Calc. Var., 17 (2011)
, 1-27.
doi: 10.1051/cocv/2009037.![]() ![]() ![]() |
|
V. Crismale, G. Lazzaroni and G. Orlando, Cohesive fracture with irreversibility: quasistatic evolution for a model subject to fatigue,
SISSA-Preprint SISSA 40/2016/MATE 1508. 02965.
![]() |
|
G. Dal Maso
, G. Francfort
and R. Toader
, Quasistatic crack growth in nonlinear elasticity, Arch. Rat. Mech. Anal., 176 (2005)
, 165-225.
doi: 10.1007/s00205-004-0351-4.![]() ![]() ![]() |
|
G. Dal Maso
, G. Orlando
and R. Toader
, Lower semicontinuity of a class of integral functionals on the space of functions of bounded deformation, Adv. Cal. Var., 10 (2017)
, 183-207.
doi: 10.1515/acv-2015-0036.![]() ![]() ![]() |
|
G. Dal Maso, G. Orlando and R. Toader, Fracture models for elasto-plastic materials as limits of gradient damage models coupled with plasticity: The anticline case Calc. Var. Partial Differential Equations 55 (2016), 39pp.
doi: 10.1007/s00526-016-0981-z.![]() ![]() ![]() |
|
G. Dal Maso
and C. Zanini
, Quasi-static crack growth for a cohesive zone model with prescribed crack path, Proc. Roy. Soc. Edinburgh Sect. A, 137 (2007)
, 253-279.
doi: 10.1017/S030821050500079X.![]() ![]() ![]() |
|
E. Di Nezza
, G. Palatucci
and E. Valdinoci
, Hitchhikers guide to the fractional sobolev spaces, Bulletin des Sciences Mathématiques, 136 (2012)
, 521-573.
doi: 10.1016/j.bulsci.2011.12.004.![]() ![]() ![]() |
|
D. Dugdale
, Yielding of steel sheets containing clits, J. Mech. Phys. Solids, 8 (1960)
, 100-104.
![]() |
|
M. Fr´emond, Contact with adhesion, in Topics in Nonsmooth Mechanics (eds. J. Moreau,
P. Panagiotopoulos and G. Strang), Birkhäuser, 1988,157–186.
![]() |
|
M. Frémond,
Non-Smooth Thermomechanics Springer-Verlag Berlin Heidelberg, 2002.
![]() |
|
A. D. Ioffe and V. M. Tihomirov,
Theory of Extremal Problems vol. 6 of Studies in Mathematics and its Applications, North-Holland Publishing Co. , Amsterdam, 1979, Translated from the Russian by Karol Makowski.
![]() ![]() |
|
A. Ioffe
, On lower semicontinuity of integral functionals. I, SIAM J. Control Optimization, 15 (1977)
, 521-538.
doi: 10.1137/0315035.![]() ![]() ![]() |
|
M. Kočvara
, A. Mielke
and T. Roubíček
, A rate-independent approach to the delamination problem, Math. Mech. Solids, 11 (2006)
, 423-447.
doi: 10.1177/1081286505046482.![]() ![]() ![]() |
|
R. Kregting,
Cohesive Zone Models Towards a Robust Implementation of Irreversible Behavior Technical Report MT05. 11, TU Eindhoven, Materials Technology, 2005.
![]() |
|
M. Kružík
, C. Panagiotopoulos
and T. Roubíček
, Quasistatic adhesive contact delaminating in mixed mode and its numerical treatment, Math. Mech. Solids, 20 (2015)
, 582-599.
doi: 10.1177/1081286513507942.![]() ![]() ![]() |
|
A. Mainik
and A. Mielke
, Existence results for energetic models for rate-independent systems, Calc. Var. Partial Differential Equations, 22 (2005)
, 73-99.
doi: 10.1007/s00526-004-0267-8.![]() ![]() ![]() |
|
M. Marcus
and V. Mizel
, Every superposition operator mapping one Sobolev space into another is continuous, J. Functional Analysis, 33 (1979)
, 217-229.
doi: 10.1016/0022-1236(79)90113-7.![]() ![]() ![]() |
|
A. Mielke and T. Roubíček,
Rate-independent Systems: Theory and Application vol. 193 of Applied Mathematical Sciences, Springer, 2015.
doi: 10.1007/978-1-4939-2706-7.![]() ![]() ![]() |
|
A. Mielke
, T. Roubíček
and M. Thomas
, From damage to delamination in nonlinearly elastic materials at small strains, J. Elasticity, 109 (2012)
, 235-273.
doi: 10.1007/s10659-012-9379-0.![]() ![]() ![]() |
|
M. Ortiz
and A. Pandolfi
, Finite-deformation irreversible cohesive elements for three-dimensional crack-propagation analysis, International Journal for Numerical Methods in Engineering, 44 (1999)
, 1267-1282.
![]() |
|
C. Panagiotopoulos, V. Mantič and T. Roubíček, Two adhesive-contact models for quasistatic mixed-mode delamination problems Mathematics and Computers in Simulation 2016.
doi: 10.1016/j.matcom.2016.10.004.![]() ![]() |
|
K. Park and G. Paulino, Cohesive zone models: A critical review of traction-separation relationships across fracture surfaces Applied Mechanics Reviews 64 (2013), 060802.
doi: 10.1115/1.4023110.![]() ![]() |
|
J. Rice, Fracture, chapter Mathematical analysis in the mechanics of fracture |
|
R. Rossi
and T. Roubíček
, Thermodynamics and analysis of rate-independent adhesive contact at small strains, Nonlinear Anal., 74 (2011)
, 3159-3190.
doi: 10.1016/j.na.2011.01.031.![]() ![]() ![]() |
|
R. Rossi
and T. Roubíček
, Adhesive contact delaminating at mixed mode, its thermodynamics and analysis, Interfaces Free Bound., 15 (2013)
, 1-37.
doi: 10.4171/IFB/293.![]() ![]() ![]() |
|
R. Rossi
and M. Thomas
, Coupling rate-independent and rate-dependent processes: Existence results, SIAM J. Math. Anal., 49 (2017)
, 1419-1494.
doi: 10.1137/15M1051567.![]() ![]() ![]() |
|
R. Rossi
and M. Thomas
, From an adhesive to a brittle delamination model in thermo-visco-elasticity, ESAIM Control Optim. Calc. Var., 21 (2015)
, 1-59.
doi: 10.1051/cocv/2014015.![]() ![]() ![]() |
|
R. Rossi and M. Thomas, From adhesive to brittle delamination in visco-elastodynamics Math. Models Methods Appl. Sci. , 2017.
doi: 10.1142/S0218202517500257.![]() ![]() |
|
T. Roubíček
, Rate-independent processes in viscous solids at small strains, Math. Methods Appl. Sci., 32 (2009)
, 825-862.
doi: 10.1002/mma.1069.![]() ![]() ![]() |
|
T. Roubíček
, Thermodynamics of rate-independent processes in viscous solids at small strains, SIAM J. Math. Anal., 42 (2010)
, 256-297.
doi: 10.1137/080729992.![]() ![]() ![]() |
|
T. Roubíček, M. Kružík and J. Zeman, Delamination and adhesive contact models and their
mathematical analysis and numerical treatment, in Mathematical methods and models in
composites, vol. 5 of Comput. Exp. Methods Struct. , Imp. Coll. Press, London, 2014,349–
400.
doi: 10.1142/9781848167858_0009.![]() ![]() ![]() |
|
T. Roubíček
, V. Mantič
and C. Panagiotopoulos
, A quasistatic mixed-mode delamination model, Discrete Contin. Dyn. Syst. Ser. S, 6 (2013)
, 591-610.
![]() ![]() |
|
T. Roubíček
, C. Panagiotopoulos
and V. Mantič
, Quasistatic adhesive contact of visco-elastic bodies and its numerical treatment for very small viscosity, ZAMM Z. Angew. Math. Mech., 93 (2013)
, 823-840.
doi: 10.1002/zamm.201200239.![]() ![]() ![]() |
|
T. Roubíček
, L. Scardia
and C. Zanini
, Quasistatic delamination problem, Continuum Mech. Thermodynam., 21 (2009)
, 223-235.
doi: 10.1007/s00161-009-0106-4.![]() ![]() ![]() |
|
T. Roubíček
, M. Thomas
and C. Panagiotopoulos
, Stress-driven local-solution approach to quasistatic brittle delamination, Nonlinear Anal. Real World Appl., 22 (2015)
, 645-663.
doi: 10.1016/j.nonrwa.2014.09.011.![]() ![]() ![]() |
|
R. Scala, A weak formulation for a rate-independent delamination evolution with inertial and viscosity effects subjected to unilateral constraint,
WIAS-Preprint 2172.
![]() |
|
R. Scala
and G. Schimperna
, A contact problem for viscoelastic bodies with inertial effects and unilateral boundary constraints, European J. Appl. Math., 28 (2017)
, 91-122.
doi: 10.1017/S0956792516000097.![]() ![]() ![]() |
|
M. Thomas
, Quasistatic damage evolution with spatial BV-regularization, Discrete Contin. Dyn. Syst. Ser. S, 6 (2013)
, 235-255.
doi: 10.3934/dcdss.2013.6.235.![]() ![]() ![]() |
|
M. Thomas
and A. Mielke
, Damage of nonlinearly elastic materials at small strain: Existence and regularity results, Zeit. angew. Math. Mech., 90 (2010)
, 88-112.
doi: 10.1002/zamm.200900243.![]() ![]() ![]() |
|
R. Vodička
, V. Mantič
and T. Roubíček
, Energetic versus maximally-dissipative local solutions of a quasi-static rate-independent mixed-mode delamination model, Meccanica, 49 (2014)
, 2933-2963.
doi: 10.1007/s11012-014-0045-4.![]() ![]() ![]() |
Typical cohesive laws. Solid lines: curves corresponding to maximal loading envelope, dashed lines: loading -unloading rules.