We illustrate an alternative derivation of the viscous regularization of a nonlinear forward-backward diffusion equation which was studied in [A. Novick-Cohen and R. L. Pego. Trans. Amer. Math. Soc., 324:331-351]. We propose and discuss a new ''non-smooth'' variant of the viscous regularization and we offer an heuristic argument that indicates that this variant should display interesting hysteretic effects. Finally, we offer a constructive proof of existence of solutions for the viscous regularization based on a suitable approximation scheme.
Citation: |
P. Atkins and J. de Paula,
Atkins' Physical Chemistry W. H. Freeman and Company, New York, 2006.
![]() |
|
G. Barenblatt
, M. Bertsch
, R. D. Passo
and M. Ughi
, A degenerate pseudoparabolic regularization of a nonlinear forward-backward heat equation arising in the theory of heat and mass exchange in stably stratified turbulent shear flow, SIAM J. Math. Anal., 24 (1993)
, 1414-1439.
doi: 10.1137/0524082.![]() ![]() ![]() |
|
M. Bertsch
, P. Podio-Guidugli
and V. Valente
, On the dynamics of deformable ferromagnets. I. Global weak solutions for soft ferromagnets at rest, Ann. Mat. Pur. Appl., 179 (2001)
, 331-360.
doi: 10.1007/BF02505962.![]() ![]() ![]() |
|
M. Bertsch
, F. Smarrazzo
and A. Tesei
, Pseudoparabolic regularization of forward-backward parabolic equations: A logarithmic nonlinearity, Analysis PDE, 6 (2013)
, 1719-1754.
doi: 10.2140/apde.2013.6.1719.![]() ![]() ![]() |
|
E. Bonetti, P. Colli and G. Tomassetti, A non-smooth regularization of a forward-backward
parabolic equation, Math. Models Methods Appl. Sci., 27 (2017), 641-661, arXiv: 1508.03225.
doi: 10.1142/S0218202517500129.![]() ![]() ![]() |
|
J. W. Cahn
and J. E. Hilliard
, Free energy of a nonuniform system. I. Interfacial free energy, J. Chem. Phys., 28 (1958)
, 258-267.
doi: 10.1002/9781118788295.ch4.![]() ![]() |
|
B. D. Coleman
and W. Noll
, The thermodynamics of elastic materials with heat conduction and viscosity, Arch. Ration. Mech. Anal., 13 (1963)
, 167-178.
doi: 10.1007/BF01262690.![]() ![]() ![]() |
|
P. Colli
, G. Gilardi
, P. Podio-Guidugli
and J. Sprekels
, Well-posedness and long-time behavior for a nonstandard viscous Cahn-Hilliard system, SIAM J. Appl. Math., 71 (2011)
, 1849-1870.
doi: 10.1137/110828526.![]() ![]() ![]() |
|
P. Colli
, G. Gilardi
, P. Podio-Guidugli
and J. Sprekels
, Global existence and uniqueness for a singular/degenerate Cahn-Hilliard system with viscosity, J. Diff. Eq., 254 (2013)
, 4217-4244.
doi: 10.1016/j.jde.2013.02.014.![]() ![]() ![]() |
|
F. P. Duda
and G. Tomassetti
, On the effect of elastic distortions on the kinetics of diffusion-induced phase transformations, J. Elasticity, 122 (2016)
, 179-195.
doi: 10.1007/s10659-015-9539-0.![]() ![]() ![]() |
|
C. Elliot and S. Luckhaus, Generalized diffusion equation for phase separation of a multi-component mixture with interfacial free energy,
Preprint 887, Institute for Mathematics and its Applications, Minneapolis, 1991.
![]() |
|
C. Elliott
and A. Stuart
, Viscous Cahn-Hilliard Equation Ⅱ. Analysis, J. Diff. Eq., 128 (1996)
, 387-414.
doi: 10.1006/jdeq.1996.0101.![]() ![]() ![]() |
|
C. M. Elliott
and H. Garcke
, On the Cahn-Hilliard equation with degenerate mobility, SIAM J. Math. Anal., 27 (1996)
, 404-423.
doi: 10.1137/S0036141094267662.![]() ![]() ![]() |
|
L. C. Evans
and M. Portilheiro
, Irreversibility and hysteresis for a forward-backward diffusion equation, Math. Mod. Meth. Appl. Sci., 14 (2004)
, 1599-1620.
doi: 10.1142/S0218202504003763.![]() ![]() ![]() |
|
P. J. Flory, Thermodynamics of high polymer solutions,
J. Chem. Phys. 10 (1942), 51.
![]() |
|
E. Fried
and M. Gurtin
, Coherent solid-state phase transitions with atomic diffusion: A thermomechanical treatment, J. Stat. Phys., 95 (1999)
, 1361-1427.
doi: 10.1023/A:1004535408168.![]() ![]() ![]() |
|
E. Fried
and S. Sellers
, Microforces and the theory of solute transport, Z. angew. Math. Phys, 51 (2000)
, 732-751.
doi: 10.1007/PL00001517.![]() ![]() ![]() |
|
M. E. Gurtin
, Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance, Phys. D, 92 (1996)
, 178-192.
doi: 10.1016/0167-2789(95)00173-5.![]() ![]() ![]() |
|
M. E. Gurtin, E. Fried and L. Anand,
The Mechanics and Thermodynamics of Continua Cambridge University Press, New York, 2010.
![]() |
|
J. -L. Lions,
Quelques Méthodes de Résolution des Problémes Aux Limites Non Linéaires Dunod, 1969.
![]() ![]() |
|
A. Lucantonio
, P. Nardinocchi
and L. Teresi
, Transient analysis of swelling-induced large deformations in polymer gels, J. Mech. Phys. Solids, 61 (2013)
, 205-218.
doi: 10.1016/j.jmps.2012.07.010.![]() ![]() ![]() |
|
A. Miranville
, A model of Cahn-Hilliard equation based on a microforce balance, Compt. Rend. Acad. Sci. -Ser. I-Math., 328 (1999)
, 1247-1252.
doi: 10.1016/S0764-4442(99)80448-0.![]() ![]() ![]() |
|
A. Miranville
, Some generalizations of the Cahn-Hilliard equation, Asympt. Anal., 22 (2000)
, 235-259.
![]() ![]() |
|
A. Miranville
, A. Pietrus
and J.-M. Rakotoson
, Dynamical aspect of a generalized Cahn-Hilliard equation based on a microforce balance, Asympt. Anal., 16 (1998)
, 315-345.
![]() ![]() |
|
A. Novick-Cohen, On the viscous Cahn-Hilliard equation, In Material instabilities in continuum mechanics (Edinburgh, 1985-1986), pages 329-342. Oxford University Press, 1988.
![]() ![]() |
|
A. Novick-Cohen
and R. L. Pego
, Stable patterns in a viscous diffusion equation, Trans. Amer. Math. Soc., 324 (1991)
, 331-351.
doi: 10.1090/S0002-9947-1991-1015926-7.![]() ![]() ![]() |
|
P. I. Plotnikov
, Passing to the limit with respect to viscosity in an equation with variable parabolicity direction, Diff. Eq., 30 (1994)
, 614-622.
![]() ![]() |
|
P. Podio-Guidugli
, Models of phase segregation and diffusion of atomic species on a lattice, Ric. Mat., 55 (2006)
, 105-118.
doi: 10.1007/s11587-006-0008-8.![]() ![]() ![]() |
|
M. M. Porzio
, F. Smarrazzo
and A. Tesei
, Radon measure-valued solutions for a class of quasilinear parabolic equations, Arch. Rat. Mech. Anal., 210 (2013)
, 713-772.
doi: 10.1007/s00205-013-0666-0.![]() ![]() ![]() |
|
T. Roubíček, Nonlinear Partial Differential Equations with Applications, second edition, Springer Basel, 2013.
![]() |
|
T. Roubíček
and G. Tomassetti
, Thermomechanics of hydrogen storage in metallic hydrides: Modeling and analysis, Discr. Cont. Dyn. Syst.-B, 19 (2014)
, 2313-2333.
doi: 10.3934/dcdsb.2014.19.2313.![]() ![]() ![]() |
|
T. Roubíček
and G. Tomassetti
, Thermomechanics of damageable materials under diffusion: Modelling and analysis, Zeit. angew. Math. Phys., 66 (2015)
, 3535-3572.
doi: 10.1007/s00033-015-0566-2.![]() ![]() ![]() |
|
B. E. Sar
, S. Fréour
, P. Davies
and F. Jacquemin
, Accounting for differential swelling in the multi-physics modelling of the diffusive behaviour of polymers, ZAMM Z. Angew. Math. Mech., 94 (2014)
, 452-460.
doi: 10.1002/zamm.201200272.![]() ![]() ![]() |
|
J. Simon
, Compact sets in the space $L^p(0, T;B)$, Ann. Mat. Pura Appl., 146 (1987)
, 65-96.
doi: 10.1007/BF01762360.![]() ![]() ![]() |
|
B. L. T. Thanh
, F. Smarrazzo
and A. Tesei
, Passage to the limit over small parameters in the viscous Cahn-Hilliard equation, J. Math. Anal. Appl., 420 (2014)
, 1265-1300.
doi: 10.1016/j.jmaa.2014.06.036.![]() ![]() ![]() |
|
B. L. T. Thanh
, F. Smarrazzo
and A. Tesei
, Sobolev regularization of a class of forward-backward parabolic equations, J. Diff. Eq., 257 (2014)
, 1403-1456.
doi: 10.1016/j.jde.2014.05.004.![]() ![]() ![]() |
|
P. Victor
, Sobolev regularization of a nonlinear ill-posed parabolic problem as a model for aggregating populations, Comm. Part. Diff. Eq., 23 (1998)
, 457-486.
doi: 10.1080/03605309808821353.![]() ![]() ![]() |
|
A. Visintin,
Differential Models of Hysteresis Springer Berlin, 1994.
doi: 10.1007/978-3-662-11557-2.![]() ![]() ![]() |
|
A. Visintin
, Forward-backward parabolic equations and hysteresis, Calc. Var. Partial Diff. Eq., 15 (2002)
, 115-132.
doi: 10.1007/s005260100120.![]() ![]() ![]() |
(a) plots of
Plots of the free energy in (105) and of its derivative (respectively, solid and dashed line).