[1]
|
F. Caetano, M. J. Gander, L. Halpern and J. Szeftel, Schwarz Waveform Relaxation Algorithms for Semilinear Reaction-Diffusion Equations, Networks And Heterog. Media, 5 (2010), 487-505.
doi: 10.3934/nhm.2010.5.487.
|
[2]
|
L. M. Carvalho, L. Giraud and P. Le Tallec, Algebraic two-level preconditioners for the Schur complement method, SIAM Journal on Scientific Computing, 22 (2000), 1987-2005.
doi: 10.1137/S1064827598340809.
|
[3]
|
T. Cazenave and A. Haraux,
An Introduction to Semilinear Evolution Equations Oxford University, Clarendon Press, 1998.
|
[4]
|
C. Chen and W. Liu, Two-grid finite volume element methods for semilinear parabolic problems, Applied Numerical Mathematics, 60 (2010), 10-18.
doi: 10.1016/j.apnum.2009.08.004.
|
[5]
|
M. Dryja and O. B. Widlund, Domain decomposition algorithms with small overlap, SIAM Journal on Scientific Computing, 15 (1994), 604-620.
doi: 10.1137/0915040.
|
[6]
|
S. Duminil, H. Sadok and D. B. Szyld, Nonlinear Schwarz iterations with reduced rank extrapolation, Applied Numerical Mathematics, 94 (2015), 209-221.
doi: 10.1016/j.apnum.2015.04.001.
|
[7]
|
R. I. Fernandes and G. Fairweather, An ADI extrapolated Crank-Nicolson orthogonal spline collocation method for nonlinear reaction-diffusion systems, Journal of Computational Physics, 231 (2012), 6248-6267.
doi: 10.1016/j.jcp.2012.04.001.
|
[8]
|
C. Hay-Jahans,
An R Companion to Linear Statistical Models CRC Press, 2011.
doi: 10.1201/b11157.
|
[9]
|
F. N. Hochbruck and X. C. Cai, A class of parallel two-level nonlinear Schwarz preconditioned inexact Newton algorithms, Computer methods in applied mechanics and engineering, 196 (2007), 1603-1611.
doi: 10.1016/j.cma.2006.03.019.
|
[10]
|
S. Khallouq and H. Belhadj, Schur complement technique for advection-diffusion equation using matching structured finite volumes, Advances in Dynamical Systems and Applications, 8 (2013), 51-62.
|
[11]
|
R. Klajn, M. Fialkowski, I. T. Bensemann, A. Bitner, C. J. Campbell, K. Bishop, S. Smoukov and B. A. Grzybowski, Multicolour Micropatterning of Thin Films of Dry Gels, Nature materials, 3 (2004), 729-735.
doi: 10.1038/nmat1231.
|
[12]
|
K. J. Lee, W. D. McCormick, J. E. Pearson and H. L. Swinney, Experimental Observation of Self-Replicating Spots in a Reaction-Diffusion System, Nature, 369 (1994), 215-218.
doi: 10.1038/369215a0.
|
[13]
|
J. W. Lottes and F. Fischer Paul, Hybrid multigrid/Schwarz algorithms for the spectral element method, Journal of Scientific Computing, 24 (2005), 45-78.
doi: 10.1007/s10915-004-4787-3.
|
[14]
|
A. Quarteroni and A. Valli,
Domain Decomposition Methods for Partial Differential Equations Oxford University Press, 1999.
|
[15]
|
A. Quarteroni and A. Valli, Theory and application of stecklov-poincaré operators for boundary value problems, In Applied and Industrial Mathematics. Springer Netherlands, 56 (1991), 179-203.
|
[16]
|
L. Roques,
Equations de Réaction-Diffusion non-Linéaires et Modélisation en Ecologie Thesis of Univ. Pierre et Marie Curie, Paris 6,2004.
|
[17]
|
N. Shigesada and K. Kawasaki,
Biological Invasions -Theory and Practice Oxford Series in Ecology and Evolution, Oxford University Press, 1997.
|
[18]
|
J. H. Stapleton,
Linear Statistical Models John Wiley and Sons, 2009.
|
[19]
|
T. P. A. Mathew,
Domain Decomposition Methods for the Numerical Solution of Partial Differential Equations Lecture Notes in Computational Science and Engineering, 61, Springer-Verlag, Berlin, 2008.
doi: 10.1007/978-3-540-77209-5.
|