February  2018, 11(1): 59-76. doi: 10.3934/dcdss.2018004

A necessary condition of Pontryagin type for fuzzy fractional optimal control problems

1. 

Department of Applied Mathematics, School of Mathematics and Computer Science, Damghan University, Damghan, Iran

2. 

Center for Research & Development in Mathematics and Applications (CIDMA), Department of Mathematics, University of Aveiro, 3810-193 Aveiro, Portugal

* Corresponding author: Delfim F. M. Torres

Received  June 2016 Revised  November 2016 Published  January 2018

Fund Project: This work is part of second author's PhD project. It was partially supported by Damghan University, Iran; and CIDMA-FCT, Portugal, under project UID/MAT/04106/2013.

We prove necessary optimality conditions of Pontryagin type for a class of fuzzy fractional optimal control problems with the fuzzy fractional derivative described in the Caputo sense. The new results are illustrated by computing the extremals of three fuzzy optimal control systems, which improve recent results of Najariyan and Farahi.

Citation: Omid S. Fard, Javad Soolaki, Delfim F. M. Torres. A necessary condition of Pontryagin type for fuzzy fractional optimal control problems. Discrete & Continuous Dynamical Systems - S, 2018, 11 (1) : 59-76. doi: 10.3934/dcdss.2018004
References:
[1]

T. AllahviranlooA. Armand and Z. Gouyandeh, Fuzzy fractional differential equations under generalized fuzzy Caputo derivative, J. Intell. Fuzzy Systems, 26 (2014), 1481-1490.   Google Scholar

[2]

R. Almeida, S. Pooseh and D. F. M. Torres, Computational Methods in the Fractional Calculus of Variations Imp. Coll. Press, London, 2015. doi: 10.1142/p991.  Google Scholar

[3]

S. Arshad and V. Lupulescu, On the fractional differential equations with uncertainty, Nonlinear Anal., 74 (2011), 3685-3693.  doi: 10.1016/j.na.2011.02.048.  Google Scholar

[4]

D. Baleanu and P. Agrawal, Fractional Hamilton formalism within Caputo's derivative, Czechoslovak J. Phys., 56 (2006), 1087-1092.  doi: 10.1007/s10582-006-0406-x.  Google Scholar

[5]

B. Bede and L. Stefanini, Generalized differentiability of fuzzy-valued functions, Fuzzy Sets and Systems, 230 (2013), 119-141.  doi: 10.1016/j.fss.2012.10.003.  Google Scholar

[6]

J. J. Buckley and T. Feuring, Introduction to fuzzy partial differential equations, Fuzzy Sets and Systems, 105 (1999), 241-248.  doi: 10.1016/S0165-0114(98)00323-6.  Google Scholar

[7]

R. A. El-Nabulsi and D. F. M. Torres, Necessary optimality conditions for fractional action-like integrals of variational calculus with Riemann-Liouville derivatives of order (α, β), Math. Methods Appl. Sci., 30 (2007), 1931-1939.  doi: 10.1002/mma.879.  Google Scholar

[8]

O. S. Fard and M. Salehi, A survey on fuzzy fractional variational problems, J. Comput. Appl. Math., 271 (2014), 71-82.  doi: 10.1016/j.cam.2014.03.019.  Google Scholar

[9]

O. S. FardD. F. M. Torres and M. R. Zadeh, A Hukuhara approach to the study of hybrid fuzzy systems on time scales, Appl. Anal. Discrete Math., 10 (2016), 152-167.  doi: 10.2298/AADM160311004F.  Google Scholar

[10]

O. S. Fard and M. S. Zadeh, Note on ''Necessary optimality conditions for fuzzy variational problems'', J. Adv. Res. Dyn. Control Syst., 4 (2012), 1-9.   Google Scholar

[11]

B. Farhadinia, Necessary optimality conditions for fuzzy variational problems, Inform. Sci., 181 (2011), 1348-1357.  doi: 10.1016/j.ins.2010.11.027.  Google Scholar

[12]

B. Farhadinia, Pontryagin's minimum principle for fuzzy optimal control problems, Iran. J. Fuzzy Syst., 11 (2014), 27-43.   Google Scholar

[13]

G. S. F. Frederico and D. F. M. Torres, Fractional conservation laws in optimal control theory, Nonlinear Dynam., 53 (2008), 215-222.  doi: 10.1007/s11071-007-9309-z.  Google Scholar

[14]

Y. Gao and Y.-J. Liu, Adaptive fuzzy optimal control using direct heuristic dynamic programming for chaotic discrete-time system, J. Vib. Control, 22 (2016), 595-603.  doi: 10.1177/1077546314534286.  Google Scholar

[15]

R. Goetschel, Jr. and W. Voxman, Elementary fuzzy calculus, Fuzzy Sets and Systems, 18 (1986), 31-43.  doi: 10.1016/0165-0114(86)90026-6.  Google Scholar

[16]

J. Y. Halpern, Reasoning about Uncertainty MIT Press, Cambridge, MA, 2003.  Google Scholar

[17]

R. Hilfer, Applications of Fractional Calculus in Physics World Sci. Publishing, River Edge, NJ, 2000. doi: 10.1142/9789812817747.  Google Scholar

[18]

N. V. Hoa, Fuzzy fractional functional differential equations under Caputo gH-differentiability, Commun. Nonlinear Sci. Numer. Simul., 22 (2015), 1134-1157.  doi: 10.1016/j.cnsns.2014.08.006.  Google Scholar

[19]

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations North-Holland Mathematics Studies, 204, Elsevier, Amsterdam, 2006.  Google Scholar

[20]

C. Li and F. Zeng, Numerical Methods for Fractional Calculus Chapman & Hall/CRC Numerical Analysis and Scientific Computing, CRC, Boca Raton, FL, 2015.  Google Scholar

[21]

A. B. Malinowska and D. F. M. Torres, Introduction to the Fractional Calculus of Variations Imp. Coll. Press, London, 2012. doi: 10.1142/p871.  Google Scholar

[22]

A. B. Malinowska, T. Odzijewicz and D. F. M. Torres, Advanced Methods in the Fractional Calculus of Variations Springer Briefs in Applied Sciences and Technology, Springer, Cham, 2015. doi: 10.1007/978-3-319-14756-7.  Google Scholar

[23]

M. Mazandarani and A. V. Kamyad, Modified fractional Euler method for solving fuzzy fractional initial value problem, Commun. Nonlinear Sci. Numer. Simul., 18 (2013), 12-21.  doi: 10.1016/j.cnsns.2012.06.008.  Google Scholar

[24]

K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations A Wiley-Interscience Publication, Wiley, New York, 1993.  Google Scholar

[25]

S. I. Muslih and D. Baleanu, Formulation of Hamiltonian equations for fractional variational problems, Czechoslovak J. Phys., 55 (2005), 633-642.  doi: 10.1007/s10582-005-0067-1.  Google Scholar

[26]

S. I. MuslihD. Baleanu and E. Rabei, Hamiltonian formulation of classical fields within Riemann-Liouville fractional derivatives, Phys. Scr., 73 (2006), 436-438.  doi: 10.1088/0031-8949/73/5/003.  Google Scholar

[27]

M. Najariyan and M. H. Farahi, Optimal control of fuzzy linear controlled system with fuzzy initial conditions, Iran. J. Fuzzy Syst., 10 (2013), 21-35.   Google Scholar

[28]

M. Najariyan and M. H. Farahi, A new approach for the optimal fuzzy linear time invariant controlled system with fuzzy coefficients, J. Comput. Appl. Math., 259 (2014), part B, 682-694.  doi: 10.1016/j.cam.2013.04.029.  Google Scholar

[29]

M. Najariyan and M. H. Farahi, A new approach for solving a class of fuzzy optimal control systems under generalized Hukuhara differentiability, J. Franklin Inst., 352 (2015), 1836-1849.  doi: 10.1016/j.jfranklin.2015.01.006.  Google Scholar

[30]

E. R. Pinch, Optimal Control and the Calculus of Variations Oxford Science Publications, Oxford Univ. Press, New York, 1993.  Google Scholar

[31]

I. Podlubny, Fractional Differential Equations Mathematics in Science and Engineering, 198, Academic Press, San Diego, CA, 1999.  Google Scholar

[32]

L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, The mathematical Theory of Optimal Processes Translated from the Russian by K. N. Trirogoff; edited by L. W. Neustadt, Interscience Publishers John Wiley & Sons, Inc. New York, 1962.  Google Scholar

[33]

S. PoosehR. Almeida and D. F. M. Torres, Fractional order optimal control problems with free terminal time, J. Ind. Manag. Optim., 10 (2014), 363-381.  doi: 10.3934/jimo.2014.10.363.  Google Scholar

[34]

S. SalahshourT. Allahviranloo and S. Abbasbandy, Solving fuzzy fractional differential equations by fuzzy Laplace transforms, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 1372-1381.  doi: 10.1016/j.cnsns.2011.07.005.  Google Scholar

[35]

S. Salahshour, T. Allahviranloo, S. Abbasbandy and D. Baleanu, Existence and uniqueness results for fractional differential equations with uncertainty Adv. Difference Equ. 2012 (2012), 12 pp. doi: 10.1186/1687-1847-2012-112.  Google Scholar

[36]

J. SoolakiO. S. Fard and A. H. Borzabadi, Generalized Euler-Lagrange equations for fuzzy variational problems, SeMA Journal, 73 (2016), 131-148.  doi: 10.1007/s40324-015-0060-y.  Google Scholar

[37]

J. SoolakiO. S. Fard and A. H. Borzabadi, Generalized Euler-Lagrange equations for fuzzy fractional variational calculus, Math. Commun., 21 (2016), 199-218.   Google Scholar

[38]

T. Takagi and M. Sugeno, Fuzzy identification of systems and its applications to modeling and control, Readings in Fuzzy Sets for Intelligent Systems, (1993), 387-403.  doi: 10.1016/B978-1-4832-1450-4.50045-6.  Google Scholar

[39]

V. E. Tarasov, Fractional variations for dynamical systems: Hamilton and Lagrange approaches, J. Phys. A, 39 (2006), 8409-8425.  doi: 10.1088/0305-4470/39/26/009.  Google Scholar

[40]

G. S. Taverna and D. F. M. Torres, Generalized fractional operators for nonstandard Lagrangians, Math. Meth. Appl. Sci., 38 (2015), 1808-1812.  doi: 10.1002/mma.3188.  Google Scholar

[41]

J. XuZ. Liao and J. J. Nieto, A class of linear differential dynamical systems with fuzzy matrices, J. Math. Anal. Appl., 368 (2010), 54-68.  doi: 10.1016/j.jmaa.2009.12.053.  Google Scholar

[42]

D. Yang and K.-Y. Cai, Finite-time quantized guaranteed cost fuzzy control for continuous-time nonlinear systems, Expert Systems with Applications, 37 (2010), 6963-6967.  doi: 10.1016/j.eswa.2010.03.024.  Google Scholar

show all references

References:
[1]

T. AllahviranlooA. Armand and Z. Gouyandeh, Fuzzy fractional differential equations under generalized fuzzy Caputo derivative, J. Intell. Fuzzy Systems, 26 (2014), 1481-1490.   Google Scholar

[2]

R. Almeida, S. Pooseh and D. F. M. Torres, Computational Methods in the Fractional Calculus of Variations Imp. Coll. Press, London, 2015. doi: 10.1142/p991.  Google Scholar

[3]

S. Arshad and V. Lupulescu, On the fractional differential equations with uncertainty, Nonlinear Anal., 74 (2011), 3685-3693.  doi: 10.1016/j.na.2011.02.048.  Google Scholar

[4]

D. Baleanu and P. Agrawal, Fractional Hamilton formalism within Caputo's derivative, Czechoslovak J. Phys., 56 (2006), 1087-1092.  doi: 10.1007/s10582-006-0406-x.  Google Scholar

[5]

B. Bede and L. Stefanini, Generalized differentiability of fuzzy-valued functions, Fuzzy Sets and Systems, 230 (2013), 119-141.  doi: 10.1016/j.fss.2012.10.003.  Google Scholar

[6]

J. J. Buckley and T. Feuring, Introduction to fuzzy partial differential equations, Fuzzy Sets and Systems, 105 (1999), 241-248.  doi: 10.1016/S0165-0114(98)00323-6.  Google Scholar

[7]

R. A. El-Nabulsi and D. F. M. Torres, Necessary optimality conditions for fractional action-like integrals of variational calculus with Riemann-Liouville derivatives of order (α, β), Math. Methods Appl. Sci., 30 (2007), 1931-1939.  doi: 10.1002/mma.879.  Google Scholar

[8]

O. S. Fard and M. Salehi, A survey on fuzzy fractional variational problems, J. Comput. Appl. Math., 271 (2014), 71-82.  doi: 10.1016/j.cam.2014.03.019.  Google Scholar

[9]

O. S. FardD. F. M. Torres and M. R. Zadeh, A Hukuhara approach to the study of hybrid fuzzy systems on time scales, Appl. Anal. Discrete Math., 10 (2016), 152-167.  doi: 10.2298/AADM160311004F.  Google Scholar

[10]

O. S. Fard and M. S. Zadeh, Note on ''Necessary optimality conditions for fuzzy variational problems'', J. Adv. Res. Dyn. Control Syst., 4 (2012), 1-9.   Google Scholar

[11]

B. Farhadinia, Necessary optimality conditions for fuzzy variational problems, Inform. Sci., 181 (2011), 1348-1357.  doi: 10.1016/j.ins.2010.11.027.  Google Scholar

[12]

B. Farhadinia, Pontryagin's minimum principle for fuzzy optimal control problems, Iran. J. Fuzzy Syst., 11 (2014), 27-43.   Google Scholar

[13]

G. S. F. Frederico and D. F. M. Torres, Fractional conservation laws in optimal control theory, Nonlinear Dynam., 53 (2008), 215-222.  doi: 10.1007/s11071-007-9309-z.  Google Scholar

[14]

Y. Gao and Y.-J. Liu, Adaptive fuzzy optimal control using direct heuristic dynamic programming for chaotic discrete-time system, J. Vib. Control, 22 (2016), 595-603.  doi: 10.1177/1077546314534286.  Google Scholar

[15]

R. Goetschel, Jr. and W. Voxman, Elementary fuzzy calculus, Fuzzy Sets and Systems, 18 (1986), 31-43.  doi: 10.1016/0165-0114(86)90026-6.  Google Scholar

[16]

J. Y. Halpern, Reasoning about Uncertainty MIT Press, Cambridge, MA, 2003.  Google Scholar

[17]

R. Hilfer, Applications of Fractional Calculus in Physics World Sci. Publishing, River Edge, NJ, 2000. doi: 10.1142/9789812817747.  Google Scholar

[18]

N. V. Hoa, Fuzzy fractional functional differential equations under Caputo gH-differentiability, Commun. Nonlinear Sci. Numer. Simul., 22 (2015), 1134-1157.  doi: 10.1016/j.cnsns.2014.08.006.  Google Scholar

[19]

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations North-Holland Mathematics Studies, 204, Elsevier, Amsterdam, 2006.  Google Scholar

[20]

C. Li and F. Zeng, Numerical Methods for Fractional Calculus Chapman & Hall/CRC Numerical Analysis and Scientific Computing, CRC, Boca Raton, FL, 2015.  Google Scholar

[21]

A. B. Malinowska and D. F. M. Torres, Introduction to the Fractional Calculus of Variations Imp. Coll. Press, London, 2012. doi: 10.1142/p871.  Google Scholar

[22]

A. B. Malinowska, T. Odzijewicz and D. F. M. Torres, Advanced Methods in the Fractional Calculus of Variations Springer Briefs in Applied Sciences and Technology, Springer, Cham, 2015. doi: 10.1007/978-3-319-14756-7.  Google Scholar

[23]

M. Mazandarani and A. V. Kamyad, Modified fractional Euler method for solving fuzzy fractional initial value problem, Commun. Nonlinear Sci. Numer. Simul., 18 (2013), 12-21.  doi: 10.1016/j.cnsns.2012.06.008.  Google Scholar

[24]

K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations A Wiley-Interscience Publication, Wiley, New York, 1993.  Google Scholar

[25]

S. I. Muslih and D. Baleanu, Formulation of Hamiltonian equations for fractional variational problems, Czechoslovak J. Phys., 55 (2005), 633-642.  doi: 10.1007/s10582-005-0067-1.  Google Scholar

[26]

S. I. MuslihD. Baleanu and E. Rabei, Hamiltonian formulation of classical fields within Riemann-Liouville fractional derivatives, Phys. Scr., 73 (2006), 436-438.  doi: 10.1088/0031-8949/73/5/003.  Google Scholar

[27]

M. Najariyan and M. H. Farahi, Optimal control of fuzzy linear controlled system with fuzzy initial conditions, Iran. J. Fuzzy Syst., 10 (2013), 21-35.   Google Scholar

[28]

M. Najariyan and M. H. Farahi, A new approach for the optimal fuzzy linear time invariant controlled system with fuzzy coefficients, J. Comput. Appl. Math., 259 (2014), part B, 682-694.  doi: 10.1016/j.cam.2013.04.029.  Google Scholar

[29]

M. Najariyan and M. H. Farahi, A new approach for solving a class of fuzzy optimal control systems under generalized Hukuhara differentiability, J. Franklin Inst., 352 (2015), 1836-1849.  doi: 10.1016/j.jfranklin.2015.01.006.  Google Scholar

[30]

E. R. Pinch, Optimal Control and the Calculus of Variations Oxford Science Publications, Oxford Univ. Press, New York, 1993.  Google Scholar

[31]

I. Podlubny, Fractional Differential Equations Mathematics in Science and Engineering, 198, Academic Press, San Diego, CA, 1999.  Google Scholar

[32]

L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, The mathematical Theory of Optimal Processes Translated from the Russian by K. N. Trirogoff; edited by L. W. Neustadt, Interscience Publishers John Wiley & Sons, Inc. New York, 1962.  Google Scholar

[33]

S. PoosehR. Almeida and D. F. M. Torres, Fractional order optimal control problems with free terminal time, J. Ind. Manag. Optim., 10 (2014), 363-381.  doi: 10.3934/jimo.2014.10.363.  Google Scholar

[34]

S. SalahshourT. Allahviranloo and S. Abbasbandy, Solving fuzzy fractional differential equations by fuzzy Laplace transforms, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 1372-1381.  doi: 10.1016/j.cnsns.2011.07.005.  Google Scholar

[35]

S. Salahshour, T. Allahviranloo, S. Abbasbandy and D. Baleanu, Existence and uniqueness results for fractional differential equations with uncertainty Adv. Difference Equ. 2012 (2012), 12 pp. doi: 10.1186/1687-1847-2012-112.  Google Scholar

[36]

J. SoolakiO. S. Fard and A. H. Borzabadi, Generalized Euler-Lagrange equations for fuzzy variational problems, SeMA Journal, 73 (2016), 131-148.  doi: 10.1007/s40324-015-0060-y.  Google Scholar

[37]

J. SoolakiO. S. Fard and A. H. Borzabadi, Generalized Euler-Lagrange equations for fuzzy fractional variational calculus, Math. Commun., 21 (2016), 199-218.   Google Scholar

[38]

T. Takagi and M. Sugeno, Fuzzy identification of systems and its applications to modeling and control, Readings in Fuzzy Sets for Intelligent Systems, (1993), 387-403.  doi: 10.1016/B978-1-4832-1450-4.50045-6.  Google Scholar

[39]

V. E. Tarasov, Fractional variations for dynamical systems: Hamilton and Lagrange approaches, J. Phys. A, 39 (2006), 8409-8425.  doi: 10.1088/0305-4470/39/26/009.  Google Scholar

[40]

G. S. Taverna and D. F. M. Torres, Generalized fractional operators for nonstandard Lagrangians, Math. Meth. Appl. Sci., 38 (2015), 1808-1812.  doi: 10.1002/mma.3188.  Google Scholar

[41]

J. XuZ. Liao and J. J. Nieto, A class of linear differential dynamical systems with fuzzy matrices, J. Math. Anal. Appl., 368 (2010), 54-68.  doi: 10.1016/j.jmaa.2009.12.053.  Google Scholar

[42]

D. Yang and K.-Y. Cai, Finite-time quantized guaranteed cost fuzzy control for continuous-time nonlinear systems, Expert Systems with Applications, 37 (2010), 6963-6967.  doi: 10.1016/j.eswa.2010.03.024.  Google Scholar

Figure 1.  The fuzzy extremals for the fuzzy optimal control problem (12) of Example 1 under $[(1)-gH]_{\beta}^{C}$-differentiability of $\tilde{x}$
Figure 2.  The fuzzy extremals for the fuzzy optimal control problem (12) of Example 1 under $[(2)-gH]$-differentiability of $\tilde{x}$
Figure 3.  The extremals for the crisp optimal control problem (19) of Example 2
Figure 4.  The fuzzy extremals for the fuzzy optimal control problem (18) of Example 2
Figure 5.  The extremals for the crisp optimal control problem (22) of Example 3
[1]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[2]

Xuefeng Zhang, Yingbo Zhang. Fault-tolerant control against actuator failures for uncertain singular fractional order systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 1-12. doi: 10.3934/naco.2020011

[3]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[4]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[5]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[6]

Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020

[7]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[8]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

[9]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[10]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[11]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379

[12]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[13]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[14]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[15]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[16]

Yahia Zare Mehrjerdi. A new methodology for solving bi-criterion fractional stochastic programming. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020054

[17]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[18]

M. S. Lee, H. G. Harno, B. S. Goh, K. H. Lim. On the bang-bang control approach via a component-wise line search strategy for unconstrained optimization. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 45-61. doi: 10.3934/naco.2020014

[19]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[20]

S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020435

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (104)
  • HTML views (189)
  • Cited by (2)

[Back to Top]