\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Noether currents for higher-order variational problems of Herglotz type with time delay

  • * Corresponding author: N. Martins

    * Corresponding author: N. Martins 
Abstract Full Text(HTML) Related Papers Cited by
  • We study, from an optimal control perspective, Noether currents for higher-order problems of Herglotz type with time delay. Main result provides new Noether currents for such generalized variational problems, which are particularly useful in the search of extremals. The proof is based on the idea of rewriting the higher-order delayed generalized variational problem as a first-order optimal control problem without time delays.

    Mathematics Subject Classification: Primary: 49K15, 49S05; Secondary: 49K05, 34H05.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] L. AbrunheiroL. Machado and N. Martins, The Herglotz variational problem on spheres and its optimal control approach, J. Math. Anal., 7 (2016), 12-22. 
    [2] R. Almeida and A. B. Malinowska, Fractional variational principle of Herglotz, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 2367-2381.  doi: 10.3934/dcdsb.2014.19.2367.
    [3] M. Bañados and I. Reyes, A short review on Noether's theorems, gauge symmetries and boundary terms Internat. J. Modern Phys. D 25 (2016), 1630021, 74 pp. doi: 10.1142/S0218271816300214.
    [4] M. Benharrat and D. F. M. Torres, Optimal control with time delays via the penalty method Math. Probl. Eng. 2014 (2014), Art. ID 250419, 9 pp. doi: 10.1155/2014/250419.
    [5] X. Dupuis, Optimal control of leukemic cell population dynamics, Math. Model. Nat. Phenom., 9 (2014), 4-26.  doi: 10.1051/mmnp/20149102.
    [6] G. S. F. Frederico and D. F. M. Torres, Noether's symmetry theorem for variational and optimal control problems with time delay, Numer. Algebra Control Optim., 2 (2012), 619-630.  doi: 10.3934/naco.2012.2.619.
    [7] G. S. F. Frederico and D. F. M. Torres, A nondifferentiable quantum variational embedding in presence of time delays, Int. J. Difference Equ., 8 (2013), 49-62. 
    [8] S. Friederich, Symmetry, empirical equivalence, and identity, British J. Philos. Sci., 66 (2015), 537-559.  doi: 10.1093/bjps/axt046.
    [9] B. Georgieva and R. Guenther, First Noether-type theorem for the generalized variational principle of Herglotz, Topol. Methods Nonlinear Anal., 20 (2002), 261-273.  doi: 10.12775/TMNA.2002.036.
    [10] B. Georgieva and R. Guenther, Second Noether-type theorem for the generalized variational principle of Herglotz, Topol. Methods Nonlinear Anal., 26 (2005), 307-314.  doi: 10.12775/TMNA.2005.034.
    [11] B. GeorgievaR. Guenther and T. Bodurov, Generalized variational principle of Herglotz for several independent variables, J. Math. Phys., 44 (2003), 3911-3927.  doi: 10.1063/1.1597419.
    [12] L. Göllmann and H. Maurer, Theory and applications of optimal control problems with multiple time-delays, J. Ind. Manag. Optim., 10 (2014), 413-441.  doi: 10.3934/jimo.2014.10.413.
    [13] R. B. GuentherJ. A. Gottsch and D. B. Kramer, The Herglotz algorithm for constructing canonical transformations, SIAM Rev., 38 (1996), 287-293.  doi: 10.1137/1038042.
    [14] R. B. Guenther, C. M. Guenther and J. A. Gottsch, The Herglotz Lectures on Contact Transformations and Hamiltonian Systems Lecture Notes in Nonlinear Analysis, Vol. 1, Juliusz Schauder Center for Nonlinear Studies, Nicholas Copernicus University, Torún, 1996.
    [15] T. Guinn, Reduction of delayed optimal control problems to nondelayed problems, J. Optimization Theory Appl., 18 (1976), 371-377.  doi: 10.1007/BF00933818.
    [16] G. Herglotz, Berührungstransformationen Lectures at the University of Göttingen, Göttingen, 1930.
    [17] S. M. Hoseini and H. R. Marzban, Costate computation by an adaptive pseudospectral method for solving optimal control problems with piecewise constant time lag, J. Optim. Theory Appl., 170 (2016), 735-755.  doi: 10.1007/s10957-016-0957-3.
    [18] Y. Kosmann-Schwarzbach, The Noether Theorems. Invariance and Conservation Laws in the Twentieth Century Translated, revised and augmented from the 2006 French edition by B. E. Schwarzbach, Sources and Studies in the History of Mathematics and Physical Sciences, Springer, New York, 2011. doi: 10.1007/978-0-387-87868-3.
    [19] A. B. Malinowska, On fractional variational problems which admit local transformations, J. Vib. Control, 19 (2013), 1161-1169.  doi: 10.1177/1077546312442697.
    [20] A. B. Malinowska and N. Martins, The second Noether theorem on time scales Abstr. Appl. Anal. 2013 (2013), Art. ID 675127, 14 pp. doi: 10.1155/2013/675127.
    [21] A. B. Malinowska and T. Odzijewicz, Second Noether's theorem with time delay, Appl. Anal., 96 (2017), 1358-1378.  doi: 10.1080/00036811.2016.1192136.
    [22] E. Noether, Invariante variationsprobleme, Nachr. v. d. Ges. d. Wiss. zu Göttingen, (1918), 235-257. 
    [23] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, The Mathematical Theory of Optimal Processes Interscience Publishers, John Wiley and Sons Inc, New York, London, 1962.
    [24] S. P. S. SantosN. Martins and D. F. M. Torres, Higher-order variational problems of Herglotz type, Vietnam J. Math., 42 (2014), 409-419.  doi: 10.1007/s10013-013-0048-9.
    [25] S. P. S. SantosN. Martins and D. F. M. Torres, Variational problems of Herglotz type with time delay: DuBois-Reymond condition and Noether's first theorem, Discrete Contin. Dyn. Syst., 35 (2015), 4593-4610.  doi: 10.3934/dcds.2015.35.4593.
    [26] S. P. S. SantosN. Martins and D. F. M. Torres, Noether's theorem for higher-order variational problems of Herglotz type, Discrete Contin. Dyn. Syst., 2015 (2015), Dynamical Systems, Differential Equations and Applications, 10th AIMS Conference. Suppl., 990-999.  doi: 10.3934/proc.2015.990.
    [27] S. P. S. SantosN. Martins and D. F. M. Torres, Higher-order variational problems of Herglotz with time delay, Pure and Applied Functional Analysis, 1 (2016), 291-307. 
    [28] G. Sardanashvily, Noether's Theorems. Applications in Mechanics and Field Theory Atlantis Studies in Variational Geometry, 3, Atlantis Press, Paris, 2016. doi: 10.2991/978-94-6239-171-0.
    [29] C. J. SilvaH. Maurer and D. F. M. Torres, Optimal control of a tuberculosis model with state and control delays, Math. Biosci. Eng., 14 (2017), 321-337.  doi: 10.3934/mbe.2017021.
    [30] D. F. M. Torres, On the Noether theorem for optimal control, Eur. J. Control, 8 (2002), 56-63.  doi: 10.3166/ejc.8.56-63.
    [31] D. F. M. Torres, Conservation laws in optimal control, in Dynamics, bifurcations, and control (Kloster Irsee, 2001), 287–296, Lecture Notes in Control and Inform. Sci. , 273, Springer, Berlin, 2002. doi: 10.1007/3-540-45606-6_20.
    [32] D. F. M. Torres, Gauge symmetries and Noether currents in optimal control, Appl. Math. E-Notes, 3 (2003), 49-57. 
    [33] D. F. M. Torres, Quasi-invariant optimal control problems, Port. Math.(N.S.), 61 (2004), 97-114. 
    [34] D. F. M. Torres, Proper extensions of Noether's symmetry theorem for nonsmooth extremals of the calculus of variations, Commun. Pure Appl. Anal., 3 (2004), 491-500.  doi: 10.3934/cpaa.2004.3.491.
  • 加载中
SHARE

Article Metrics

HTML views(681) PDF downloads(349) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return