In this paper, we consider the existence and further qualitative properties of solutions of the Dirichlet problem to quasilinear multi-valued elliptic equations with measures of the form
$Au + G(\cdot,u) \ni f,$
where $A$ is a second order elliptic operator of Leray-Lions type and $f\in \mathcal M_b(\Omega)$ is a given Radon measure on a bounded domain $\Omega\subset \mathbb R^N$. The lower order term $s\mapsto G(\cdot,s)$ is assumed to be a multi-valued upper semicontinuous function, which includes Clarke's gradient $s\mapsto \partial j(\cdot,s)$ of some locally Lipschitz function $s\mapsto j(\cdot,s)$ as a special case. Our main goals and the novelties of this paper are as follows: First, we develop an existence theory for the above multi-valued elliptic problem with measure right-hand side. Second, we propose concepts of sub-supersolutions for this problem and establish an existence and comparison principle. Third, we topologically characterize the solution set enclosed by sub-supersolutions.
Citation: |
[1] |
J. Appell, E. De Pascale, H.T. Nguyen and P.P. Zabrejko, Multivalued superpositions, Dissertationes Mathematicae, 345 (1995), 1-97.
![]() ![]() |
[2] |
L. Boccardo, Some nonlinear Dirichlet problems in L1 involving lower order terms in divergence form, Progress in Elliptic and Parabolic Partial Differential Equations (Capri, 1994),
43–57, Pitman Res. Notes Math. Ser. , 350, Longman, Harlow, 1996.
![]() ![]() |
[3] |
L. Boccardo and T. Gallouët, Non-linear elliptic and parabolic equations involving measure data, Journal of Functional Analysis, 87 (1989), 149-169.
doi: 10.1016/0022-1236(89)90005-0.![]() ![]() ![]() |
[4] |
S. Carl and V.K. Le, Existence results for hemivariational inequalities with measures, Applicable Analysis, 86 (2007), 735-753.
doi: 10.1080/00036810701397796.![]() ![]() ![]() |
[5] |
S. Carl and V.K. Le, Elliptic inequalities with multi-valued operators: Existence, comparison and related variational-hemivariational type inequalities, Nonlinear Analysis: Theory, Methods & Applications, 121 (2015), 130-152.
doi: 10.1016/j.na.2014.10.033.![]() ![]() ![]() |
[6] |
S. Carl, V. K. Le and D. Motreanu,
Nonsmooth Variational Problems and Their Inequalities Springer Monograph in Mathematics, Springer, New York, 2007.
doi: 10.1007/978-0-387-46252-3.![]() ![]() ![]() |
[7] |
G. Dal Maso, F. Murat, L. Orsina and A. Prignet, Renormalized solutions of elliptic equations with general measure data, nnali della Scuola Normale Superiore di Pisa -Classe di Scienze, 28 (1999), 741-808.
![]() ![]() |
[8] |
J. J. Duistermaat and J. A. C. Kolk,
Distributions: Theory and Applications Birkhäuser, Boston, 2010.
doi: 10.1007/978-0-8176-4675-2.![]() ![]() ![]() |
[9] |
J. Leray and J.-L. Lions, Quelques résultats de Višik sur les problémes elliptiques non linéaires par les méthodes de Minty-Browder, Bulletin de la Société Mathématique de France, 93 (1965), 97-107.
![]() ![]() |
[10] |
Z. Naniewicz and P. D. Panagiotopoulos,
Mathematical Theory of Hemivariational Inequalities and Applications Marcel Dekker, Inc. , New York, Basel, Hong Kong, 1995.
![]() ![]() |
[11] |
A. C. Ponce, Selected problems on elliptic equations involving measures, preprint, arXiv:1204.0668v2.
![]() |
[12] |
M. M. Rao,
Measure Theory and Integration Marcel Dekker, Inc. , New York, Basel, 2004.
![]() ![]() |
[13] |
R. E. Showalter,
Monotone Operators in Banach Space and Nonlinear Partial Differential Equations American Mathematical Society, Providence, RI, 1997.
![]() ![]() |
[14] |
I. I. Vrabie,
Compactness Methods for Nonlinear Evolutions Pitman Monographs and Surveys in Pure and Applied Mathematikcs, 75 2nd edition, Longman, New York, 1995.
![]() ![]() |