April  2018, 11(2): 193-212. doi: 10.3934/dcdss.2018012

Quasilinear elliptic equations with measures and multi-valued lower order terms

Institut für Mathematik, Martin-Luther-Universität Halle-Wittenberg, 06099 Halle, Germany

* Corresponding author: Christoph Tietz

Received  November 2016 Revised  April 2017 Published  January 2018

Fund Project: The second author is supported by a doctoral studies grant of Saxony-Anhalt.

In this paper, we consider the existence and further qualitative properties of solutions of the Dirichlet problem to quasilinear multi-valued elliptic equations with measures of the form
$Au + G(\cdot,u) \ni f,$
where
$A$
is a second order elliptic operator of Leray-Lions type and
$f\in \mathcal M_b(\Omega)$
is a given Radon measure on a bounded domain
$\Omega\subset \mathbb R^N$
. The lower order term
$s\mapsto G(\cdot,s)$
is assumed to be a multi-valued upper semicontinuous function, which includes Clarke's gradient
$s\mapsto \partial j(\cdot,s)$
of some locally Lipschitz function
$s\mapsto j(\cdot,s)$
as a special case. Our main goals and the novelties of this paper are as follows: First, we develop an existence theory for the above multi-valued elliptic problem with measure right-hand side. Second, we propose concepts of sub-supersolutions for this problem and establish an existence and comparison principle. Third, we topologically characterize the solution set enclosed by sub-supersolutions.
Citation: Siegfried Carl, Christoph Tietz. Quasilinear elliptic equations with measures and multi-valued lower order terms. Discrete & Continuous Dynamical Systems - S, 2018, 11 (2) : 193-212. doi: 10.3934/dcdss.2018012
References:
[1]

J. AppellE. De PascaleH.T. Nguyen and P.P. Zabrejko, Multivalued superpositions, Dissertationes Mathematicae, 345 (1995), 1-97.   Google Scholar

[2]

L. Boccardo, Some nonlinear Dirichlet problems in L1 involving lower order terms in divergence form, Progress in Elliptic and Parabolic Partial Differential Equations (Capri, 1994), 43–57, Pitman Res. Notes Math. Ser. , 350, Longman, Harlow, 1996.  Google Scholar

[3]

L. Boccardo and T. Gallouët, Non-linear elliptic and parabolic equations involving measure data, Journal of Functional Analysis, 87 (1989), 149-169.  doi: 10.1016/0022-1236(89)90005-0.  Google Scholar

[4]

S. Carl and V.K. Le, Existence results for hemivariational inequalities with measures, Applicable Analysis, 86 (2007), 735-753.  doi: 10.1080/00036810701397796.  Google Scholar

[5]

S. Carl and V.K. Le, Elliptic inequalities with multi-valued operators: Existence, comparison and related variational-hemivariational type inequalities, Nonlinear Analysis: Theory, Methods & Applications, 121 (2015), 130-152.  doi: 10.1016/j.na.2014.10.033.  Google Scholar

[6]

S. Carl, V. K. Le and D. Motreanu, Nonsmooth Variational Problems and Their Inequalities Springer Monograph in Mathematics, Springer, New York, 2007. doi: 10.1007/978-0-387-46252-3.  Google Scholar

[7]

G. Dal MasoF. MuratL. Orsina and A. Prignet, Renormalized solutions of elliptic equations with general measure data, nnali della Scuola Normale Superiore di Pisa -Classe di Scienze, 28 (1999), 741-808.   Google Scholar

[8]

J. J. Duistermaat and J. A. C. Kolk, Distributions: Theory and Applications Birkhäuser, Boston, 2010. doi: 10.1007/978-0-8176-4675-2.  Google Scholar

[9]

J. Leray and J.-L. Lions, Quelques résultats de Višik sur les problémes elliptiques non linéaires par les méthodes de Minty-Browder, Bulletin de la Société Mathématique de France, 93 (1965), 97-107.   Google Scholar

[10]

Z. Naniewicz and P. D. Panagiotopoulos, Mathematical Theory of Hemivariational Inequalities and Applications Marcel Dekker, Inc. , New York, Basel, Hong Kong, 1995.  Google Scholar

[11]

A. C. Ponce, Selected problems on elliptic equations involving measures, preprint, arXiv:1204.0668v2. Google Scholar

[12]

M. M. Rao, Measure Theory and Integration Marcel Dekker, Inc. , New York, Basel, 2004.  Google Scholar

[13]

R. E. Showalter, Monotone Operators in Banach Space and Nonlinear Partial Differential Equations American Mathematical Society, Providence, RI, 1997.  Google Scholar

[14]

I. I. Vrabie, Compactness Methods for Nonlinear Evolutions Pitman Monographs and Surveys in Pure and Applied Mathematikcs, 75 2nd edition, Longman, New York, 1995.  Google Scholar

show all references

References:
[1]

J. AppellE. De PascaleH.T. Nguyen and P.P. Zabrejko, Multivalued superpositions, Dissertationes Mathematicae, 345 (1995), 1-97.   Google Scholar

[2]

L. Boccardo, Some nonlinear Dirichlet problems in L1 involving lower order terms in divergence form, Progress in Elliptic and Parabolic Partial Differential Equations (Capri, 1994), 43–57, Pitman Res. Notes Math. Ser. , 350, Longman, Harlow, 1996.  Google Scholar

[3]

L. Boccardo and T. Gallouët, Non-linear elliptic and parabolic equations involving measure data, Journal of Functional Analysis, 87 (1989), 149-169.  doi: 10.1016/0022-1236(89)90005-0.  Google Scholar

[4]

S. Carl and V.K. Le, Existence results for hemivariational inequalities with measures, Applicable Analysis, 86 (2007), 735-753.  doi: 10.1080/00036810701397796.  Google Scholar

[5]

S. Carl and V.K. Le, Elliptic inequalities with multi-valued operators: Existence, comparison and related variational-hemivariational type inequalities, Nonlinear Analysis: Theory, Methods & Applications, 121 (2015), 130-152.  doi: 10.1016/j.na.2014.10.033.  Google Scholar

[6]

S. Carl, V. K. Le and D. Motreanu, Nonsmooth Variational Problems and Their Inequalities Springer Monograph in Mathematics, Springer, New York, 2007. doi: 10.1007/978-0-387-46252-3.  Google Scholar

[7]

G. Dal MasoF. MuratL. Orsina and A. Prignet, Renormalized solutions of elliptic equations with general measure data, nnali della Scuola Normale Superiore di Pisa -Classe di Scienze, 28 (1999), 741-808.   Google Scholar

[8]

J. J. Duistermaat and J. A. C. Kolk, Distributions: Theory and Applications Birkhäuser, Boston, 2010. doi: 10.1007/978-0-8176-4675-2.  Google Scholar

[9]

J. Leray and J.-L. Lions, Quelques résultats de Višik sur les problémes elliptiques non linéaires par les méthodes de Minty-Browder, Bulletin de la Société Mathématique de France, 93 (1965), 97-107.   Google Scholar

[10]

Z. Naniewicz and P. D. Panagiotopoulos, Mathematical Theory of Hemivariational Inequalities and Applications Marcel Dekker, Inc. , New York, Basel, Hong Kong, 1995.  Google Scholar

[11]

A. C. Ponce, Selected problems on elliptic equations involving measures, preprint, arXiv:1204.0668v2. Google Scholar

[12]

M. M. Rao, Measure Theory and Integration Marcel Dekker, Inc. , New York, Basel, 2004.  Google Scholar

[13]

R. E. Showalter, Monotone Operators in Banach Space and Nonlinear Partial Differential Equations American Mathematical Society, Providence, RI, 1997.  Google Scholar

[14]

I. I. Vrabie, Compactness Methods for Nonlinear Evolutions Pitman Monographs and Surveys in Pure and Applied Mathematikcs, 75 2nd edition, Longman, New York, 1995.  Google Scholar

[1]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[2]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[3]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[4]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[5]

Shun Zhang, Jianlin Jiang, Su Zhang, Yibing Lv, Yuzhen Guo. ADMM-type methods for generalized multi-facility Weber problem. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020171

[6]

Ripeng Huang, Shaojian Qu, Xiaoguang Yang, Zhimin Liu. Multi-stage distributionally robust optimization with risk aversion. Journal of Industrial & Management Optimization, 2021, 17 (1) : 233-259. doi: 10.3934/jimo.2019109

[7]

Hongguang Ma, Xiang Li. Multi-period hazardous waste collection planning with consideration of risk stability. Journal of Industrial & Management Optimization, 2021, 17 (1) : 393-408. doi: 10.3934/jimo.2019117

[8]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[9]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[10]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[11]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[12]

Chao Wang, Qihuai Liu, Zhiguo Wang. Periodic bouncing solutions for Hill's type sub-linear oscillators with obstacles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 281-300. doi: 10.3934/cpaa.2020266

[13]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[14]

Harrison Bray. Ergodicity of Bowen–Margulis measure for the Benoist 3-manifolds. Journal of Modern Dynamics, 2020, 16: 305-329. doi: 10.3934/jmd.2020011

[15]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[16]

Giulia Luise, Giuseppe Savaré. Contraction and regularizing properties of heat flows in metric measure spaces. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 273-297. doi: 10.3934/dcdss.2020327

[17]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[18]

Russell Ricks. The unique measure of maximal entropy for a compact rank one locally CAT(0) space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 507-523. doi: 10.3934/dcds.2020266

[19]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[20]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (67)
  • HTML views (156)
  • Cited by (2)

Other articles
by authors

[Back to Top]