-
Previous Article
Systems of quasilinear elliptic equations with dependence on the gradient via subsolution-supersolution method
- DCDS-S Home
- This Issue
-
Next Article
Some recent results on the Dirichlet problem for $(p, q)$-Laplace equations
Location of Nodal solutions for quasilinear elliptic equations with gradient dependence
1. | Université de Perpignan, Département de Mathématiques, 66860 Perpignan, France |
2. | Lycée Polyvalent Franklin Roosevelt, 10 Rue du Président Franklin Roosevelt, 51100 Reims, France |
3. | Université A. Mira de Bejaia, Laboratoire de Mathématiques Appliquées (LMA), Faculté des Sciences Exactes, Targa Ouzemour 06000 Bejaia, Algeria |
Existence and regularity results for quasilinear elliptic equations driven by $(p, q)$-Laplacian and with gradient dependence are presented. A location principle for nodal (i.e., sign-changing) solutions is obtained by means of constant-sign solutions whose existence is also derived. Criteria for the existence of extremal solutions are finally established.
References:
[1] |
D. Averna, D. Motreanu and E. Tornatore,
Existence and asymptotic properties for quasilinear elliptic equations with gradient dependence, Appl. Math. Lett., 61 (2016), 102-107.
doi: 10.1016/j.aml.2016.05.009. |
[2] |
S. Carl,
Barrier solutions of elliptic variational inequalities, Nonlinear Anal. Real World Appl., 26 (2015), 75-92.
doi: 10.1016/j.nonrwa.2015.04.004. |
[3] |
S. Carl, V. K. Le and D. Motreanu, Nonsmooth Variational Problems and Their Inequalities. Comparison Principles and Applications, Springer, New York, 2007.
doi: 10.1007/978-0-387-46252-3.![]() ![]() ![]() |
[4] |
A. Cianchi and V. Maz'ya,
Global gradient estimates in elliptic problems under minimal data and domain regularity, Commun. Pure Appl. Anal., 14 (2015), 285-311.
doi: 10.3934/cpaa.2015.14.285. |
[5] |
N. Dunford and J. T. Schwartz,
Linear Operators. I. General Theory Interscience Publishers, Inc. , New York; Interscience Publishers, Ltd. , London, 1958. |
[6] |
G. M. Lieberman,
Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal., 12 (1988), 1203-1219.
doi: 10.1016/0362-546X(88)90053-3. |
[7] |
G. M. Lieberman,
The natural generalization of the natural conditions of Ladyzhenskaya and Ural'tseva for elliptic equations, Comm. Partial Differential Equations, 16 (1991), 311-361.
doi: 10.1080/03605309108820761. |
[8] |
S. Miyajima, D. Motreanu and M. Tanaka,
Multiple existence results of solutions for the Neumann problems via super- and sub-solutions, J. Funct. Anal., 262 (2012), 1921-1953.
doi: 10.1016/j.jfa.2011.11.028. |
[9] |
D. Motreanu, V. V. Motreanu and N. S. Papageorgiou,
A unified approach for multiple constant sign and nodal solutions, Adv. Differential Equations, 12 (2007), 1363-1392.
|
[10] |
D. Motreanu, V. V. Motreanu and N. S. Papageorgiou, Topological and Variational Methods with Applications to Nonlinear Boundary Value Problems, Springer, New York, 2014.
doi: 10.1007/978-1-4614-9323-5.![]() ![]() ![]() |
[11] |
P. Pucci and J. Serrin, The Maximum Principle, Springer, New York, 2007.
doi: 10.1007/978-3-7643-8145-5.![]() ![]() ![]() |
show all references
References:
[1] |
D. Averna, D. Motreanu and E. Tornatore,
Existence and asymptotic properties for quasilinear elliptic equations with gradient dependence, Appl. Math. Lett., 61 (2016), 102-107.
doi: 10.1016/j.aml.2016.05.009. |
[2] |
S. Carl,
Barrier solutions of elliptic variational inequalities, Nonlinear Anal. Real World Appl., 26 (2015), 75-92.
doi: 10.1016/j.nonrwa.2015.04.004. |
[3] |
S. Carl, V. K. Le and D. Motreanu, Nonsmooth Variational Problems and Their Inequalities. Comparison Principles and Applications, Springer, New York, 2007.
doi: 10.1007/978-0-387-46252-3.![]() ![]() ![]() |
[4] |
A. Cianchi and V. Maz'ya,
Global gradient estimates in elliptic problems under minimal data and domain regularity, Commun. Pure Appl. Anal., 14 (2015), 285-311.
doi: 10.3934/cpaa.2015.14.285. |
[5] |
N. Dunford and J. T. Schwartz,
Linear Operators. I. General Theory Interscience Publishers, Inc. , New York; Interscience Publishers, Ltd. , London, 1958. |
[6] |
G. M. Lieberman,
Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal., 12 (1988), 1203-1219.
doi: 10.1016/0362-546X(88)90053-3. |
[7] |
G. M. Lieberman,
The natural generalization of the natural conditions of Ladyzhenskaya and Ural'tseva for elliptic equations, Comm. Partial Differential Equations, 16 (1991), 311-361.
doi: 10.1080/03605309108820761. |
[8] |
S. Miyajima, D. Motreanu and M. Tanaka,
Multiple existence results of solutions for the Neumann problems via super- and sub-solutions, J. Funct. Anal., 262 (2012), 1921-1953.
doi: 10.1016/j.jfa.2011.11.028. |
[9] |
D. Motreanu, V. V. Motreanu and N. S. Papageorgiou,
A unified approach for multiple constant sign and nodal solutions, Adv. Differential Equations, 12 (2007), 1363-1392.
|
[10] |
D. Motreanu, V. V. Motreanu and N. S. Papageorgiou, Topological and Variational Methods with Applications to Nonlinear Boundary Value Problems, Springer, New York, 2014.
doi: 10.1007/978-1-4614-9323-5.![]() ![]() ![]() |
[11] |
P. Pucci and J. Serrin, The Maximum Principle, Springer, New York, 2007.
doi: 10.1007/978-3-7643-8145-5.![]() ![]() ![]() |
[1] |
Xavier Cabré, Manel Sanchón. Semi-stable and extremal solutions of reaction equations involving the $p$-Laplacian. Communications on Pure and Applied Analysis, 2007, 6 (1) : 43-67. doi: 10.3934/cpaa.2007.6.43 |
[2] |
L. Cherfils, Y. Il'yasov. On the stationary solutions of generalized reaction diffusion equations with $p\& q$-Laplacian. Communications on Pure and Applied Analysis, 2005, 4 (1) : 9-22. doi: 10.3934/cpaa.2005.4.9 |
[3] |
Dumitru Motreanu. Three solutions with precise sign properties for systems of quasilinear elliptic equations. Discrete and Continuous Dynamical Systems - S, 2012, 5 (4) : 831-843. doi: 10.3934/dcdss.2012.5.831 |
[4] |
Gustavo S. Costa, Giovany M. Figueiredo. Existence and concentration of nodal solutions for a subcritical p&q equation. Communications on Pure and Applied Analysis, 2020, 19 (11) : 5077-5095. doi: 10.3934/cpaa.2020227 |
[5] |
Elisa Calzolari, Roberta Filippucci, Patrizia Pucci. Existence of radial solutions for the $p$-Laplacian elliptic equations with weights. Discrete and Continuous Dynamical Systems, 2006, 15 (2) : 447-479. doi: 10.3934/dcds.2006.15.447 |
[6] |
Guowei Dai. Bifurcation and one-sign solutions of the $p$-Laplacian involving a nonlinearity with zeros. Discrete and Continuous Dynamical Systems, 2016, 36 (10) : 5323-5345. doi: 10.3934/dcds.2016034 |
[7] |
Michael Filippakis, Alexandru Kristály, Nikolaos S. Papageorgiou. Existence of five nonzero solutions with exact sign for a $p$-Laplacian equation. Discrete and Continuous Dynamical Systems, 2009, 24 (2) : 405-440. doi: 10.3934/dcds.2009.24.405 |
[8] |
Guowei Dai, Ruyun Ma, Haiyan Wang. Eigenvalues, bifurcation and one-sign solutions for the periodic $p$-Laplacian. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2839-2872. doi: 10.3934/cpaa.2013.12.2839 |
[9] |
Nikolaos S. Papageorgiou, George Smyrlis. Positive solutions for parametric $p$-Laplacian equations. Communications on Pure and Applied Analysis, 2016, 15 (5) : 1545-1570. doi: 10.3934/cpaa.2016002 |
[10] |
Peter Poláčik. On the multiplicity of nonnegative solutions with a nontrivial nodal set for elliptic equations on symmetric domains. Discrete and Continuous Dynamical Systems, 2014, 34 (6) : 2657-2667. doi: 10.3934/dcds.2014.34.2657 |
[11] |
Nikolaos S. Papageorgiou, Vicenţiu D. Rǎdulescu, Dušan D. Repovš. Nodal solutions for the Robin p-Laplacian plus an indefinite potential and a general reaction term. Communications on Pure and Applied Analysis, 2018, 17 (1) : 231-241. doi: 10.3934/cpaa.2018014 |
[12] |
Yanqin Fang, De Tang. Method of sub-super solutions for fractional elliptic equations. Discrete and Continuous Dynamical Systems - B, 2018, 23 (8) : 3153-3165. doi: 10.3934/dcdsb.2017212 |
[13] |
Genni Fragnelli, Dimitri Mugnai, Nikolaos S. Papageorgiou. Robin problems for the p-Laplacian with gradient dependence. Discrete and Continuous Dynamical Systems - S, 2019, 12 (2) : 287-295. doi: 10.3934/dcdss.2019020 |
[14] |
Li Yin, Jinghua Yao, Qihu Zhang, Chunshan Zhao. Multiple solutions with constant sign of a Dirichlet problem for a class of elliptic systems with variable exponent growth. Discrete and Continuous Dynamical Systems, 2017, 37 (4) : 2207-2226. doi: 10.3934/dcds.2017095 |
[15] |
Zaizheng Li, Qidi Zhang. Sub-solutions and a point-wise Hopf's lemma for fractional $ p $-Laplacian. Communications on Pure and Applied Analysis, 2021, 20 (2) : 835-865. doi: 10.3934/cpaa.2020293 |
[16] |
John R. Graef, Lingju Kong. Uniqueness and parameter dependence of positive solutions of third order boundary value problems with $p$-laplacian. Conference Publications, 2011, 2011 (Special) : 515-522. doi: 10.3934/proc.2011.2011.515 |
[17] |
Shouchuan Hu, Nikolas S. Papageorgiou. Positive solutions for resonant (p, q)-equations with concave terms. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2639-2656. doi: 10.3934/cpaa.2018125 |
[18] |
Leszek Gasiński, Nikolaos S. Papageorgiou. A pair of positive solutions for $(p,q)$-equations with combined nonlinearities. Communications on Pure and Applied Analysis, 2014, 13 (1) : 203-215. doi: 10.3934/cpaa.2014.13.203 |
[19] |
Nikolaos S. Papageorgiou, Vicenţiu D. Rădulescu, Jian Zhang. Sequences of high and low energy solutions for weighted (p, q)-equations. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022114 |
[20] |
Meiqiang Feng, Yichen Zhang. Positive solutions of singular multiparameter p-Laplacian elliptic systems. Discrete and Continuous Dynamical Systems - B, 2022, 27 (2) : 1121-1147. doi: 10.3934/dcdsb.2021083 |
2020 Impact Factor: 2.425
Tools
Metrics
Other articles
by authors
[Back to Top]