June  2018, 11(3): 379-389. doi: 10.3934/dcdss.2018021

On a new fractional Sobolev space and applications to nonlocal variational problems with variable exponent

1. 

Mathematics Department, University of Monastir, Faculty of Sciences, 5019 Monastir, Tunisia

2. 

Department of Mathematics, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia

3. 

Department of Mathematics, University of Craiova, Street A.I. Cuza No. 13,200585 Craiova, Romania

* Corresponding author: Vicent¸iu D. Rădulescu

Received  May 2017 Revised  August 2017 Published  October 2017

Fund Project: The second author is supported by a grant of the Romanian National Authority for Scientific Research and Innovation, CNCS-UEFISCDI, project number PN-Ⅲ-P4-ID-PCE-2016-0130.

The content of this paper is at the interplay between function spaces $L^{p(x)}$ and $W^{k, p(x)}$ with variable exponents and fractional Sobolev spaces $W^{s, p}$. We are concerned with some qualitative properties of the fractional Sobolev space $W^{s, q(x), p(x, y)}$, where $q$ and $p$ are variable exponents and $s∈ (0, 1)$. We also study a related nonlocal operator, which is a fractional version of the nonhomogeneous $p(x)$-Laplace operator. The abstract results established in this paper are applied in the variational analysis of a class of nonlocal fractional problems with several variable exponents.

Citation: Anouar Bahrouni, VicenŢiu D. RĂdulescu. On a new fractional Sobolev space and applications to nonlocal variational problems with variable exponent. Discrete & Continuous Dynamical Systems - S, 2018, 11 (3) : 379-389. doi: 10.3934/dcdss.2018021
References:
[1]

G. Autuori and P. Pucci, Elliptic problems involving the fractional Laplacian in $\mathbb{R}^{N}$, J. Differential Equations, 255 (2013), 2340-2362.  doi: 10.1016/j.jde.2013.06.016.  Google Scholar

[2]

A. Bahrouni, Trudinger-Moser type inequality and existence of solution for perturbed non-local elliptic operators with exponential nonlinearity, Commun. Pure Appl. Anal., 16 (2017), 243-252.  doi: 10.3934/cpaa.2017011.  Google Scholar

[3]

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations Universitext. Springer, New York, 2011. doi: 10.1007/978-0-387-70914-7.  Google Scholar

[4]

H. Brezis and E. H. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., 88 (1983), 486-490.  doi: 10.2307/2044999.  Google Scholar

[5]

C. Bucur and E. Valdinoci, Nonlocal Diffusion and Applications Lecture Notes of the Unione Matematica Italiana, 20. Springer, [Cham]; Unione Matematica Italiana, Bologna, 2016. doi: 10.1007/978-3-319-28739-3.  Google Scholar

[6]

L. CaffarelliJ.-M. Roquejoffre and Y. Sire, Variational problems for free boundaries for the fractional Laplacian, J. Eur. Math. Soc. (JEMS), 12 (2010), 1151-1179.  doi: 10.4171/JEMS/226.  Google Scholar

[7]

L. CaffarelliS. Salsa and L. Silvestre, Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian, Invent. Math., 171 (2008), 425-461.  doi: 10.1007/s00222-007-0086-6.  Google Scholar

[8]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260.  doi: 10.1080/03605300600987306.  Google Scholar

[9]

E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[10]

S. Dipierro, M. Medina and E. Valdinoci, Fractional Elliptic Problems with Critical Growth in the Whole of ${\mathbb R}^n$ Lecture Notes, Scuola Normale Superiore di Pisa, 15. Edizioni della Normale, Pisa, 2017. doi: 10.1007/978-88-7642-601-8.  Google Scholar

[11]

X. Fan and D. Zhao, On the spaces $L^{p(x)}(Ω)$ and $W^{m, p(x)}(Ω)$, J. Math. Anal. Appl., 263 (2001), 424-446.  doi: 10.1006/jmaa.2000.7617.  Google Scholar

[12]

U. Kaufmann, J. D. Rossi and R. Vidal, Fractional Sobolev spaces with variable exponents and fractional $p(x)$-Laplacians, preprint, http://mate.dm.uba.ar/~jrossi/krvP.pdf. Google Scholar

[13]

P. Marcellini, Regularity and existence of solutions of elliptic equations with $p, q$-growth conditions, J. Differential Equations, 90 (1991), 1-30.  doi: 10.1016/0022-0396(91)90158-6.  Google Scholar

[14]

G. Molica Bisci and V. Rădulescu, Ground state solutions of scalar field fractional Schrödinger equations, Calc. Var. Partial Differential Equations, 54 (2015), 2985-3008.  doi: 10.1007/s00526-015-0891-5.  Google Scholar

[15]

G. Molica Bisci, V. Rădulescu and R. Servadei, Variational Methods for Nonlocal Fractional Problems Encyclopedia of Mathematics and its Applications, 162. Cambridge University Press, Cambridge, 2016. doi: 10.1017/CBO9781316282397.  Google Scholar

[16]

W. Orlicz, Über konjugierte Exponentenfolgen, Studia Math., 3 (1931), 200-211.  doi: 10.4064/sm-3-1-200-211.  Google Scholar

[17]

P. PucciX. Mingqi and B. Zhang, Existence and multiplicity of entire solutions for fractional $p$-Kirchhoff equations, Adv. Nonlinear Anal., 5 (2016), 27-55.  doi: 10.1515/anona-2015-0102.  Google Scholar

[18]

V. D. Rădulescu, Nonlinear elliptic equations with variable exponent: old and new, Nonlinear Anal., 121 (2015), 336-369.  doi: 10.1016/j.na.2014.11.007.  Google Scholar

[19]

V. D. Rădulescu and D. D. Repovš, Partial Differential Equations with Variable Exponents: Variational Methods and Qualitative Analysis Monographs and Research Notes in Mathematics. CRC Press, Boca Raton, FL, 2015. doi: 10.1201/b18601.  Google Scholar

[20]

R. Servadei and E. Valdinoci, Mountain pass solutions for non-local elliptic operators, J. Math. Anal. Appl., 389 (2012), 887-898.  doi: 10.1016/j.jmaa.2011.12.032.  Google Scholar

[21]

R. Servadei and E. Valdinoci, Variational methods for non-local operators of elliptic type, Discrete Contin. Dyn. Syst., 33 (2013), 2105-2137.  doi: 10.3934/dcds.2013.33.2105.  Google Scholar

[22]

J. Simon, Régularité de la solution d'une équation non linéaire dans ${\mathbb R}^N$, Journées d'Analyse Non Linéaire (Proc. Conf., Besançon, 1977), pp. 205-227, Lecture Notes in Math., 665, Springer, Berlin, 1978.  Google Scholar

[23] E. Zeidler, Nonlinear Functional Analysis and its Applications, II/B: Nonlinear Monotone Operators, Springer-Verlag, New York, 1990.  doi: 10.1007/978-1-4612-0985-0.  Google Scholar
[24]

V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Izv. Akad. Nauk SSSR Ser. Mat., 50 (1986), 675-710.   Google Scholar

show all references

References:
[1]

G. Autuori and P. Pucci, Elliptic problems involving the fractional Laplacian in $\mathbb{R}^{N}$, J. Differential Equations, 255 (2013), 2340-2362.  doi: 10.1016/j.jde.2013.06.016.  Google Scholar

[2]

A. Bahrouni, Trudinger-Moser type inequality and existence of solution for perturbed non-local elliptic operators with exponential nonlinearity, Commun. Pure Appl. Anal., 16 (2017), 243-252.  doi: 10.3934/cpaa.2017011.  Google Scholar

[3]

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations Universitext. Springer, New York, 2011. doi: 10.1007/978-0-387-70914-7.  Google Scholar

[4]

H. Brezis and E. H. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., 88 (1983), 486-490.  doi: 10.2307/2044999.  Google Scholar

[5]

C. Bucur and E. Valdinoci, Nonlocal Diffusion and Applications Lecture Notes of the Unione Matematica Italiana, 20. Springer, [Cham]; Unione Matematica Italiana, Bologna, 2016. doi: 10.1007/978-3-319-28739-3.  Google Scholar

[6]

L. CaffarelliJ.-M. Roquejoffre and Y. Sire, Variational problems for free boundaries for the fractional Laplacian, J. Eur. Math. Soc. (JEMS), 12 (2010), 1151-1179.  doi: 10.4171/JEMS/226.  Google Scholar

[7]

L. CaffarelliS. Salsa and L. Silvestre, Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian, Invent. Math., 171 (2008), 425-461.  doi: 10.1007/s00222-007-0086-6.  Google Scholar

[8]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260.  doi: 10.1080/03605300600987306.  Google Scholar

[9]

E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[10]

S. Dipierro, M. Medina and E. Valdinoci, Fractional Elliptic Problems with Critical Growth in the Whole of ${\mathbb R}^n$ Lecture Notes, Scuola Normale Superiore di Pisa, 15. Edizioni della Normale, Pisa, 2017. doi: 10.1007/978-88-7642-601-8.  Google Scholar

[11]

X. Fan and D. Zhao, On the spaces $L^{p(x)}(Ω)$ and $W^{m, p(x)}(Ω)$, J. Math. Anal. Appl., 263 (2001), 424-446.  doi: 10.1006/jmaa.2000.7617.  Google Scholar

[12]

U. Kaufmann, J. D. Rossi and R. Vidal, Fractional Sobolev spaces with variable exponents and fractional $p(x)$-Laplacians, preprint, http://mate.dm.uba.ar/~jrossi/krvP.pdf. Google Scholar

[13]

P. Marcellini, Regularity and existence of solutions of elliptic equations with $p, q$-growth conditions, J. Differential Equations, 90 (1991), 1-30.  doi: 10.1016/0022-0396(91)90158-6.  Google Scholar

[14]

G. Molica Bisci and V. Rădulescu, Ground state solutions of scalar field fractional Schrödinger equations, Calc. Var. Partial Differential Equations, 54 (2015), 2985-3008.  doi: 10.1007/s00526-015-0891-5.  Google Scholar

[15]

G. Molica Bisci, V. Rădulescu and R. Servadei, Variational Methods for Nonlocal Fractional Problems Encyclopedia of Mathematics and its Applications, 162. Cambridge University Press, Cambridge, 2016. doi: 10.1017/CBO9781316282397.  Google Scholar

[16]

W. Orlicz, Über konjugierte Exponentenfolgen, Studia Math., 3 (1931), 200-211.  doi: 10.4064/sm-3-1-200-211.  Google Scholar

[17]

P. PucciX. Mingqi and B. Zhang, Existence and multiplicity of entire solutions for fractional $p$-Kirchhoff equations, Adv. Nonlinear Anal., 5 (2016), 27-55.  doi: 10.1515/anona-2015-0102.  Google Scholar

[18]

V. D. Rădulescu, Nonlinear elliptic equations with variable exponent: old and new, Nonlinear Anal., 121 (2015), 336-369.  doi: 10.1016/j.na.2014.11.007.  Google Scholar

[19]

V. D. Rădulescu and D. D. Repovš, Partial Differential Equations with Variable Exponents: Variational Methods and Qualitative Analysis Monographs and Research Notes in Mathematics. CRC Press, Boca Raton, FL, 2015. doi: 10.1201/b18601.  Google Scholar

[20]

R. Servadei and E. Valdinoci, Mountain pass solutions for non-local elliptic operators, J. Math. Anal. Appl., 389 (2012), 887-898.  doi: 10.1016/j.jmaa.2011.12.032.  Google Scholar

[21]

R. Servadei and E. Valdinoci, Variational methods for non-local operators of elliptic type, Discrete Contin. Dyn. Syst., 33 (2013), 2105-2137.  doi: 10.3934/dcds.2013.33.2105.  Google Scholar

[22]

J. Simon, Régularité de la solution d'une équation non linéaire dans ${\mathbb R}^N$, Journées d'Analyse Non Linéaire (Proc. Conf., Besançon, 1977), pp. 205-227, Lecture Notes in Math., 665, Springer, Berlin, 1978.  Google Scholar

[23] E. Zeidler, Nonlinear Functional Analysis and its Applications, II/B: Nonlinear Monotone Operators, Springer-Verlag, New York, 1990.  doi: 10.1007/978-1-4612-0985-0.  Google Scholar
[24]

V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Izv. Akad. Nauk SSSR Ser. Mat., 50 (1986), 675-710.   Google Scholar

[1]

Xing-Bin Pan. Variational and operator methods for Maxwell-Stokes system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3909-3955. doi: 10.3934/dcds.2020036

[2]

Yoshitsugu Kabeya. Eigenvalues of the Laplace-Beltrami operator under the homogeneous Neumann condition on a large zonal domain in the unit sphere. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3529-3559. doi: 10.3934/dcds.2020040

[3]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[4]

Nguyen Anh Tuan, Donal O'Regan, Dumitru Baleanu, Nguyen H. Tuan. On time fractional pseudo-parabolic equations with nonlocal integral conditions. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020109

[5]

Wenxiong Chen, Congming Li, Shijie Qi. A Hopf lemma and regularity for fractional $ p $-Laplacians. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3235-3252. doi: 10.3934/dcds.2020034

[6]

Lateef Olakunle Jolaoso, Maggie Aphane. Bregman subgradient extragradient method with monotone self-adjustment stepsize for solving pseudo-monotone variational inequalities and fixed point problems. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020178

[7]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[8]

Zaizheng Li, Qidi Zhang. Sub-solutions and a point-wise Hopf's lemma for fractional $ p $-Laplacian. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020293

[9]

Marc Homs-Dones. A generalization of the Babbage functional equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 899-919. doi: 10.3934/dcds.2020303

[10]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[11]

Abdollah Borhanifar, Maria Alessandra Ragusa, Sohrab Valizadeh. High-order numerical method for two-dimensional Riesz space fractional advection-dispersion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020355

[12]

Andrew D. Lewis. Erratum for "nonholonomic and constrained variational mechanics". Journal of Geometric Mechanics, 2020, 12 (4) : 671-675. doi: 10.3934/jgm.2020033

[13]

Sujit Kumar Samanta, Rakesh Nandi. Analysis of $GI^{[X]}/D$-$MSP/1/\infty$ queue using $RG$-factorization. Journal of Industrial & Management Optimization, 2021, 17 (2) : 549-573. doi: 10.3934/jimo.2019123

[14]

Constantine M. Dafermos. A variational approach to the Riemann problem for hyperbolic conservation laws. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 185-195. doi: 10.3934/dcds.2009.23.185

[15]

Parikshit Upadhyaya, Elias Jarlebring, Emanuel H. Rubensson. A density matrix approach to the convergence of the self-consistent field iteration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 99-115. doi: 10.3934/naco.2020018

[16]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[17]

Ole Løseth Elvetun, Bjørn Fredrik Nielsen. A regularization operator for source identification for elliptic PDEs. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021006

[18]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[19]

Shuang Liu, Yuan Lou. A functional approach towards eigenvalue problems associated with incompressible flow. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3715-3736. doi: 10.3934/dcds.2020028

[20]

Shipra Singh, Aviv Gibali, Xiaolong Qin. Cooperation in traffic network problems via evolutionary split variational inequalities. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020170

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (954)
  • HTML views (443)
  • Cited by (19)

Other articles
by authors

[Back to Top]