June  2018, 11(3): 391-424. doi: 10.3934/dcdss.2018022

Global compactness results for nonlocal problems

1. 

Dipartimento di Matematica e Informatica, Università degli Studi di Ferrara, Via Machiavelli 35,44121 Ferrara, Italy

2. 

Aix-Marseille Université, CNRS, Centrale Marseille, I2M, UMR 7373, 39 Rue Frédéric Joliot Curie, 13453 Marseille, France

3. 

Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore, Via dei Musei 41, I-25121 Brescia, Italy

4. 

School of Science, Jiangnan University, Wuxi, Jiangsu 214122, China

Received  May 2017 Revised  August 2017 Published  October 2017

Fund Project: L.B. and M.S. are members of the Gruppo Nazionale per l'Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM). Y.Y. was supported by NSFC (No. 11501252,11571176), Tian Yuan Special Foundation (No. 11226116), Natural Science Foundation of Jiangsu Province of China for Young Scholars (No. BK2012109).

We obtain a Struwe type global compactness result for a class of nonlinear nonlocal problems involving the fractional $p-$Laplacian operator and nonlinearities at critical growth.

Citation: Lorenzo Brasco, Marco Squassina, Yang Yang. Global compactness results for nonlocal problems. Discrete & Continuous Dynamical Systems - S, 2018, 11 (3) : 391-424. doi: 10.3934/dcdss.2018022
References:
[1]

C. O. Alves, Existence of positive solutions for a problem with lack of compactness involving the $p$-Laplacian, Nonlinear Anal., 51 (2002), 1187-1206.  doi: 10.1016/S0362-546X(01)00887-2.  Google Scholar

[2]

L. Brasco and G. Franzina, Convexity properties of Dirichlet integrals and Picone-type inequalities, Kodai Math. J., 37 (2014), 769-799.  doi: 10.2996/kmj/1414674621.  Google Scholar

[3]

L. BrascoE. Lindgren and E. Parini, The fractional Cheeger problem, Interfaces Free Bound., 16 (2014), 419-458.  doi: 10.4171/IFB/325.  Google Scholar

[4]

L. Brasco, S. Mosconi and M. Squassina, Optimal decay of extremals for the fractional Sobolev inequality Calc. Var. Partial Differential Equations 55 (2016), Art. 23, 32 pp. doi: 10.1007/s00526-016-0958-y.  Google Scholar

[5]

L. Brasco and E. Parini, The second eigenvalue of the fractional $p$-Laplacian, Adv. Calc. Var., 9 (2016), 323-355.  doi: 10.1515/acv-2015-0007.  Google Scholar

[6]

H. Brézis and E. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., 88 (1983), 486-490.  doi: 10.2307/2044999.  Google Scholar

[7]

M. Clapp, A global compactness result for elliptic problems with critical nonlinearity on symmetric domains, Nonlinear Equations: Methods, Models and Applications (Bergamo, 2001), 117-126, Progr. Nonlinear Differential Equations Appl. , 54, Birkhäuser, Basel, 2003.  Google Scholar

[8]

A. Di CastroT. Kuusi and G. Palatucci, Local behavior of fractional $p$-minimizers, Ann. Inst. H. Poincaré Anal. Non Linéaire, 33 (2016), 1279-1299.  doi: 10.1016/j.anihpc.2015.04.003.  Google Scholar

[9]

E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[10]

M. M. Fall and T. Weth, Nonexistence results for a class of fractional elliptic boundary value problems, J. Funct. Anal., 263 (2012), 2205-2227.  doi: 10.1016/j.jfa.2012.06.018.  Google Scholar

[11]

R. L. Frank and R. Seiringer, Non-linear ground state representations and sharp Hardy inequalities, J. Funct. Anal., 255 (2008), 3407-3430.  doi: 10.1016/j.jfa.2008.05.015.  Google Scholar

[12]

F. GazzolaH. C. Grunau and M. Squassina, Existence and nonexistence results for critical growth biharmonic elliptic equations, Calc. Var. Partial Differential Equations, 18 (2003), 117-143.  doi: 10.1007/s00526-002-0182-9.  Google Scholar

[13]

P. Gerard, Description du défaut de compacité de l'injection de Sobolev, ESAIM Control Optim. Calc. Var., 3 (1998), 213-233.  doi: 10.1051/cocv:1998107.  Google Scholar

[14]

S. Jaffard, Analysis of the lack of compactness in the critical Sobolev embeddings, J. Funct. Anal., 161 (1999), 384-396.  doi: 10.1006/jfan.1998.3364.  Google Scholar

[15]

C. MercuriB. Sciunzi and M. Squassina, On Coron's problem for the $p$-Laplacian, J. Math. Anal. Appl., 421 (2015), 362-369.  doi: 10.1016/j.jmaa.2014.07.018.  Google Scholar

[16]

C. Mercuri and M. Willem, A global compactness result for the $p$-Laplacian involving critical nonlinearities, Discrete Cont. Dyn. Syst., 28 (2010), 469-493.  doi: 10.3934/dcds.2010.28.469.  Google Scholar

[17]

G. Palatucci and A. Pisante, Improved Sobolev embeddings, profile decomposition, and concentration compactness for fractional Sobolev spaces, Calc. Var. Partial Differential Equations, 50 (2014), 799-829.  doi: 10.1007/s00526-013-0656-y.  Google Scholar

[18]

G. Palatucci and A. Pisante, A global compactness type result for Palais-Smale sequences in fractional Sobolev spaces, Nonlinear Anal., 117 (2015), 1-7.  doi: 10.1016/j.na.2014.12.027.  Google Scholar

[19]

S. SecchiN. Shioji and M. Squassina, Coron problem for fractional equations, Differential Integral Equations, 28 (2015), 103-118.   Google Scholar

[20]

W. Sickel, L. Skrzypczak and J. Vybiral, On the interplay of regularity and decay in case of radial functions Ⅰ. Inhomogeneous spaces Commun. Contemp. Math. 14 (2012), 1250005, 60 pp. doi: 10.1142/S0219199712500058.  Google Scholar

[21]

M. Struwe, A global compactness result for elliptic boundary value problems involving limiting nonlinearities, Math. Z., 187 (1984), 511-517.  doi: 10.1007/BF01174186.  Google Scholar

[22]

H. Triebel, Theory of Function Spaces. III, Monographs in Mathematics, 100. Birkhäuser Verlag, Basel, 2006.  Google Scholar

[23]

H. Triebel, Theory of Function Spaces [Reprint of 1983 edition]. Modern Birkhäuser Classics. Birkhäuser/Springer Basel AG, Basel, 2010.  Google Scholar

[24]

M. Willem, Minimax Theorems, Progress Nonlinear Differential Equations Appl. 24. Birkhäuser Boston, Inc., Boston, MA, 1996. doi: 10.1007/978-1-4612-4146-1.  Google Scholar

[25]

S. Yan, A global compactness result for quasilinear elliptic equations with critical Sobolev exponents, Chinese Ann. Math. Ser. A, 16 (1995), 397-402.   Google Scholar

show all references

References:
[1]

C. O. Alves, Existence of positive solutions for a problem with lack of compactness involving the $p$-Laplacian, Nonlinear Anal., 51 (2002), 1187-1206.  doi: 10.1016/S0362-546X(01)00887-2.  Google Scholar

[2]

L. Brasco and G. Franzina, Convexity properties of Dirichlet integrals and Picone-type inequalities, Kodai Math. J., 37 (2014), 769-799.  doi: 10.2996/kmj/1414674621.  Google Scholar

[3]

L. BrascoE. Lindgren and E. Parini, The fractional Cheeger problem, Interfaces Free Bound., 16 (2014), 419-458.  doi: 10.4171/IFB/325.  Google Scholar

[4]

L. Brasco, S. Mosconi and M. Squassina, Optimal decay of extremals for the fractional Sobolev inequality Calc. Var. Partial Differential Equations 55 (2016), Art. 23, 32 pp. doi: 10.1007/s00526-016-0958-y.  Google Scholar

[5]

L. Brasco and E. Parini, The second eigenvalue of the fractional $p$-Laplacian, Adv. Calc. Var., 9 (2016), 323-355.  doi: 10.1515/acv-2015-0007.  Google Scholar

[6]

H. Brézis and E. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., 88 (1983), 486-490.  doi: 10.2307/2044999.  Google Scholar

[7]

M. Clapp, A global compactness result for elliptic problems with critical nonlinearity on symmetric domains, Nonlinear Equations: Methods, Models and Applications (Bergamo, 2001), 117-126, Progr. Nonlinear Differential Equations Appl. , 54, Birkhäuser, Basel, 2003.  Google Scholar

[8]

A. Di CastroT. Kuusi and G. Palatucci, Local behavior of fractional $p$-minimizers, Ann. Inst. H. Poincaré Anal. Non Linéaire, 33 (2016), 1279-1299.  doi: 10.1016/j.anihpc.2015.04.003.  Google Scholar

[9]

E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[10]

M. M. Fall and T. Weth, Nonexistence results for a class of fractional elliptic boundary value problems, J. Funct. Anal., 263 (2012), 2205-2227.  doi: 10.1016/j.jfa.2012.06.018.  Google Scholar

[11]

R. L. Frank and R. Seiringer, Non-linear ground state representations and sharp Hardy inequalities, J. Funct. Anal., 255 (2008), 3407-3430.  doi: 10.1016/j.jfa.2008.05.015.  Google Scholar

[12]

F. GazzolaH. C. Grunau and M. Squassina, Existence and nonexistence results for critical growth biharmonic elliptic equations, Calc. Var. Partial Differential Equations, 18 (2003), 117-143.  doi: 10.1007/s00526-002-0182-9.  Google Scholar

[13]

P. Gerard, Description du défaut de compacité de l'injection de Sobolev, ESAIM Control Optim. Calc. Var., 3 (1998), 213-233.  doi: 10.1051/cocv:1998107.  Google Scholar

[14]

S. Jaffard, Analysis of the lack of compactness in the critical Sobolev embeddings, J. Funct. Anal., 161 (1999), 384-396.  doi: 10.1006/jfan.1998.3364.  Google Scholar

[15]

C. MercuriB. Sciunzi and M. Squassina, On Coron's problem for the $p$-Laplacian, J. Math. Anal. Appl., 421 (2015), 362-369.  doi: 10.1016/j.jmaa.2014.07.018.  Google Scholar

[16]

C. Mercuri and M. Willem, A global compactness result for the $p$-Laplacian involving critical nonlinearities, Discrete Cont. Dyn. Syst., 28 (2010), 469-493.  doi: 10.3934/dcds.2010.28.469.  Google Scholar

[17]

G. Palatucci and A. Pisante, Improved Sobolev embeddings, profile decomposition, and concentration compactness for fractional Sobolev spaces, Calc. Var. Partial Differential Equations, 50 (2014), 799-829.  doi: 10.1007/s00526-013-0656-y.  Google Scholar

[18]

G. Palatucci and A. Pisante, A global compactness type result for Palais-Smale sequences in fractional Sobolev spaces, Nonlinear Anal., 117 (2015), 1-7.  doi: 10.1016/j.na.2014.12.027.  Google Scholar

[19]

S. SecchiN. Shioji and M. Squassina, Coron problem for fractional equations, Differential Integral Equations, 28 (2015), 103-118.   Google Scholar

[20]

W. Sickel, L. Skrzypczak and J. Vybiral, On the interplay of regularity and decay in case of radial functions Ⅰ. Inhomogeneous spaces Commun. Contemp. Math. 14 (2012), 1250005, 60 pp. doi: 10.1142/S0219199712500058.  Google Scholar

[21]

M. Struwe, A global compactness result for elliptic boundary value problems involving limiting nonlinearities, Math. Z., 187 (1984), 511-517.  doi: 10.1007/BF01174186.  Google Scholar

[22]

H. Triebel, Theory of Function Spaces. III, Monographs in Mathematics, 100. Birkhäuser Verlag, Basel, 2006.  Google Scholar

[23]

H. Triebel, Theory of Function Spaces [Reprint of 1983 edition]. Modern Birkhäuser Classics. Birkhäuser/Springer Basel AG, Basel, 2010.  Google Scholar

[24]

M. Willem, Minimax Theorems, Progress Nonlinear Differential Equations Appl. 24. Birkhäuser Boston, Inc., Boston, MA, 1996. doi: 10.1007/978-1-4612-4146-1.  Google Scholar

[25]

S. Yan, A global compactness result for quasilinear elliptic equations with critical Sobolev exponents, Chinese Ann. Math. Ser. A, 16 (1995), 397-402.   Google Scholar

[1]

Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021023

[2]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

[3]

Sergi Simon. Linearised higher variational equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4827-4854. doi: 10.3934/dcds.2014.34.4827

[4]

Sandrine Anthoine, Jean-François Aujol, Yannick Boursier, Clothilde Mélot. Some proximal methods for Poisson intensity CBCT and PET. Inverse Problems & Imaging, 2012, 6 (4) : 565-598. doi: 10.3934/ipi.2012.6.565

[5]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1757-1778. doi: 10.3934/dcdss.2020453

[6]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

[7]

Xue-Ping Luo, Yi-Bin Xiao, Wei Li. Strict feasibility of variational inclusion problems in reflexive Banach spaces. Journal of Industrial & Management Optimization, 2020, 16 (5) : 2495-2502. doi: 10.3934/jimo.2019065

[8]

Livia Betz, Irwin Yousept. Optimal control of elliptic variational inequalities with bounded and unbounded operators. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021009

[9]

Hakan Özadam, Ferruh Özbudak. A note on negacyclic and cyclic codes of length $p^s$ over a finite field of characteristic $p$. Advances in Mathematics of Communications, 2009, 3 (3) : 265-271. doi: 10.3934/amc.2009.3.265

[10]

Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094

[11]

Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212

[12]

Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024

[13]

Carlos Gutierrez, Nguyen Van Chau. A remark on an eigenvalue condition for the global injectivity of differentiable maps of $R^2$. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 397-402. doi: 10.3934/dcds.2007.17.397

[14]

Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617

[15]

Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206

[16]

María J. Garrido-Atienza, Bohdan Maslowski, Jana  Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088

[17]

Khosro Sayevand, Valeyollah Moradi. A robust computational framework for analyzing fractional dynamical systems. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021022

[18]

Amit Goswami, Sushila Rathore, Jagdev Singh, Devendra Kumar. Analytical study of fractional nonlinear Schrödinger equation with harmonic oscillator. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021021

[19]

Zhimin Chen, Kaihui Liu, Xiuxiang Liu. Evaluating vaccination effectiveness of group-specific fractional-dose strategies. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021062

[20]

Huy Dinh, Harbir Antil, Yanlai Chen, Elena Cherkaev, Akil Narayan. Model reduction for fractional elliptic problems using Kato's formula. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021004

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (111)
  • HTML views (206)
  • Cited by (6)

Other articles
by authors

[Back to Top]