June  2018, 11(3): 391-424. doi: 10.3934/dcdss.2018022

Global compactness results for nonlocal problems

1. 

Dipartimento di Matematica e Informatica, Università degli Studi di Ferrara, Via Machiavelli 35,44121 Ferrara, Italy

2. 

Aix-Marseille Université, CNRS, Centrale Marseille, I2M, UMR 7373, 39 Rue Frédéric Joliot Curie, 13453 Marseille, France

3. 

Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore, Via dei Musei 41, I-25121 Brescia, Italy

4. 

School of Science, Jiangnan University, Wuxi, Jiangsu 214122, China

Received  May 2017 Revised  August 2017 Published  October 2017

Fund Project: L.B. and M.S. are members of the Gruppo Nazionale per l'Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM). Y.Y. was supported by NSFC (No. 11501252,11571176), Tian Yuan Special Foundation (No. 11226116), Natural Science Foundation of Jiangsu Province of China for Young Scholars (No. BK2012109).

We obtain a Struwe type global compactness result for a class of nonlinear nonlocal problems involving the fractional $p-$Laplacian operator and nonlinearities at critical growth.

Citation: Lorenzo Brasco, Marco Squassina, Yang Yang. Global compactness results for nonlocal problems. Discrete & Continuous Dynamical Systems - S, 2018, 11 (3) : 391-424. doi: 10.3934/dcdss.2018022
References:
[1]

C. O. Alves, Existence of positive solutions for a problem with lack of compactness involving the $p$-Laplacian, Nonlinear Anal., 51 (2002), 1187-1206.  doi: 10.1016/S0362-546X(01)00887-2.  Google Scholar

[2]

L. Brasco and G. Franzina, Convexity properties of Dirichlet integrals and Picone-type inequalities, Kodai Math. J., 37 (2014), 769-799.  doi: 10.2996/kmj/1414674621.  Google Scholar

[3]

L. BrascoE. Lindgren and E. Parini, The fractional Cheeger problem, Interfaces Free Bound., 16 (2014), 419-458.  doi: 10.4171/IFB/325.  Google Scholar

[4]

L. Brasco, S. Mosconi and M. Squassina, Optimal decay of extremals for the fractional Sobolev inequality Calc. Var. Partial Differential Equations 55 (2016), Art. 23, 32 pp. doi: 10.1007/s00526-016-0958-y.  Google Scholar

[5]

L. Brasco and E. Parini, The second eigenvalue of the fractional $p$-Laplacian, Adv. Calc. Var., 9 (2016), 323-355.  doi: 10.1515/acv-2015-0007.  Google Scholar

[6]

H. Brézis and E. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., 88 (1983), 486-490.  doi: 10.2307/2044999.  Google Scholar

[7]

M. Clapp, A global compactness result for elliptic problems with critical nonlinearity on symmetric domains, Nonlinear Equations: Methods, Models and Applications (Bergamo, 2001), 117-126, Progr. Nonlinear Differential Equations Appl. , 54, Birkhäuser, Basel, 2003.  Google Scholar

[8]

A. Di CastroT. Kuusi and G. Palatucci, Local behavior of fractional $p$-minimizers, Ann. Inst. H. Poincaré Anal. Non Linéaire, 33 (2016), 1279-1299.  doi: 10.1016/j.anihpc.2015.04.003.  Google Scholar

[9]

E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[10]

M. M. Fall and T. Weth, Nonexistence results for a class of fractional elliptic boundary value problems, J. Funct. Anal., 263 (2012), 2205-2227.  doi: 10.1016/j.jfa.2012.06.018.  Google Scholar

[11]

R. L. Frank and R. Seiringer, Non-linear ground state representations and sharp Hardy inequalities, J. Funct. Anal., 255 (2008), 3407-3430.  doi: 10.1016/j.jfa.2008.05.015.  Google Scholar

[12]

F. GazzolaH. C. Grunau and M. Squassina, Existence and nonexistence results for critical growth biharmonic elliptic equations, Calc. Var. Partial Differential Equations, 18 (2003), 117-143.  doi: 10.1007/s00526-002-0182-9.  Google Scholar

[13]

P. Gerard, Description du défaut de compacité de l'injection de Sobolev, ESAIM Control Optim. Calc. Var., 3 (1998), 213-233.  doi: 10.1051/cocv:1998107.  Google Scholar

[14]

S. Jaffard, Analysis of the lack of compactness in the critical Sobolev embeddings, J. Funct. Anal., 161 (1999), 384-396.  doi: 10.1006/jfan.1998.3364.  Google Scholar

[15]

C. MercuriB. Sciunzi and M. Squassina, On Coron's problem for the $p$-Laplacian, J. Math. Anal. Appl., 421 (2015), 362-369.  doi: 10.1016/j.jmaa.2014.07.018.  Google Scholar

[16]

C. Mercuri and M. Willem, A global compactness result for the $p$-Laplacian involving critical nonlinearities, Discrete Cont. Dyn. Syst., 28 (2010), 469-493.  doi: 10.3934/dcds.2010.28.469.  Google Scholar

[17]

G. Palatucci and A. Pisante, Improved Sobolev embeddings, profile decomposition, and concentration compactness for fractional Sobolev spaces, Calc. Var. Partial Differential Equations, 50 (2014), 799-829.  doi: 10.1007/s00526-013-0656-y.  Google Scholar

[18]

G. Palatucci and A. Pisante, A global compactness type result for Palais-Smale sequences in fractional Sobolev spaces, Nonlinear Anal., 117 (2015), 1-7.  doi: 10.1016/j.na.2014.12.027.  Google Scholar

[19]

S. SecchiN. Shioji and M. Squassina, Coron problem for fractional equations, Differential Integral Equations, 28 (2015), 103-118.   Google Scholar

[20]

W. Sickel, L. Skrzypczak and J. Vybiral, On the interplay of regularity and decay in case of radial functions Ⅰ. Inhomogeneous spaces Commun. Contemp. Math. 14 (2012), 1250005, 60 pp. doi: 10.1142/S0219199712500058.  Google Scholar

[21]

M. Struwe, A global compactness result for elliptic boundary value problems involving limiting nonlinearities, Math. Z., 187 (1984), 511-517.  doi: 10.1007/BF01174186.  Google Scholar

[22]

H. Triebel, Theory of Function Spaces. III, Monographs in Mathematics, 100. Birkhäuser Verlag, Basel, 2006.  Google Scholar

[23]

H. Triebel, Theory of Function Spaces [Reprint of 1983 edition]. Modern Birkhäuser Classics. Birkhäuser/Springer Basel AG, Basel, 2010.  Google Scholar

[24]

M. Willem, Minimax Theorems, Progress Nonlinear Differential Equations Appl. 24. Birkhäuser Boston, Inc., Boston, MA, 1996. doi: 10.1007/978-1-4612-4146-1.  Google Scholar

[25]

S. Yan, A global compactness result for quasilinear elliptic equations with critical Sobolev exponents, Chinese Ann. Math. Ser. A, 16 (1995), 397-402.   Google Scholar

show all references

References:
[1]

C. O. Alves, Existence of positive solutions for a problem with lack of compactness involving the $p$-Laplacian, Nonlinear Anal., 51 (2002), 1187-1206.  doi: 10.1016/S0362-546X(01)00887-2.  Google Scholar

[2]

L. Brasco and G. Franzina, Convexity properties of Dirichlet integrals and Picone-type inequalities, Kodai Math. J., 37 (2014), 769-799.  doi: 10.2996/kmj/1414674621.  Google Scholar

[3]

L. BrascoE. Lindgren and E. Parini, The fractional Cheeger problem, Interfaces Free Bound., 16 (2014), 419-458.  doi: 10.4171/IFB/325.  Google Scholar

[4]

L. Brasco, S. Mosconi and M. Squassina, Optimal decay of extremals for the fractional Sobolev inequality Calc. Var. Partial Differential Equations 55 (2016), Art. 23, 32 pp. doi: 10.1007/s00526-016-0958-y.  Google Scholar

[5]

L. Brasco and E. Parini, The second eigenvalue of the fractional $p$-Laplacian, Adv. Calc. Var., 9 (2016), 323-355.  doi: 10.1515/acv-2015-0007.  Google Scholar

[6]

H. Brézis and E. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., 88 (1983), 486-490.  doi: 10.2307/2044999.  Google Scholar

[7]

M. Clapp, A global compactness result for elliptic problems with critical nonlinearity on symmetric domains, Nonlinear Equations: Methods, Models and Applications (Bergamo, 2001), 117-126, Progr. Nonlinear Differential Equations Appl. , 54, Birkhäuser, Basel, 2003.  Google Scholar

[8]

A. Di CastroT. Kuusi and G. Palatucci, Local behavior of fractional $p$-minimizers, Ann. Inst. H. Poincaré Anal. Non Linéaire, 33 (2016), 1279-1299.  doi: 10.1016/j.anihpc.2015.04.003.  Google Scholar

[9]

E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[10]

M. M. Fall and T. Weth, Nonexistence results for a class of fractional elliptic boundary value problems, J. Funct. Anal., 263 (2012), 2205-2227.  doi: 10.1016/j.jfa.2012.06.018.  Google Scholar

[11]

R. L. Frank and R. Seiringer, Non-linear ground state representations and sharp Hardy inequalities, J. Funct. Anal., 255 (2008), 3407-3430.  doi: 10.1016/j.jfa.2008.05.015.  Google Scholar

[12]

F. GazzolaH. C. Grunau and M. Squassina, Existence and nonexistence results for critical growth biharmonic elliptic equations, Calc. Var. Partial Differential Equations, 18 (2003), 117-143.  doi: 10.1007/s00526-002-0182-9.  Google Scholar

[13]

P. Gerard, Description du défaut de compacité de l'injection de Sobolev, ESAIM Control Optim. Calc. Var., 3 (1998), 213-233.  doi: 10.1051/cocv:1998107.  Google Scholar

[14]

S. Jaffard, Analysis of the lack of compactness in the critical Sobolev embeddings, J. Funct. Anal., 161 (1999), 384-396.  doi: 10.1006/jfan.1998.3364.  Google Scholar

[15]

C. MercuriB. Sciunzi and M. Squassina, On Coron's problem for the $p$-Laplacian, J. Math. Anal. Appl., 421 (2015), 362-369.  doi: 10.1016/j.jmaa.2014.07.018.  Google Scholar

[16]

C. Mercuri and M. Willem, A global compactness result for the $p$-Laplacian involving critical nonlinearities, Discrete Cont. Dyn. Syst., 28 (2010), 469-493.  doi: 10.3934/dcds.2010.28.469.  Google Scholar

[17]

G. Palatucci and A. Pisante, Improved Sobolev embeddings, profile decomposition, and concentration compactness for fractional Sobolev spaces, Calc. Var. Partial Differential Equations, 50 (2014), 799-829.  doi: 10.1007/s00526-013-0656-y.  Google Scholar

[18]

G. Palatucci and A. Pisante, A global compactness type result for Palais-Smale sequences in fractional Sobolev spaces, Nonlinear Anal., 117 (2015), 1-7.  doi: 10.1016/j.na.2014.12.027.  Google Scholar

[19]

S. SecchiN. Shioji and M. Squassina, Coron problem for fractional equations, Differential Integral Equations, 28 (2015), 103-118.   Google Scholar

[20]

W. Sickel, L. Skrzypczak and J. Vybiral, On the interplay of regularity and decay in case of radial functions Ⅰ. Inhomogeneous spaces Commun. Contemp. Math. 14 (2012), 1250005, 60 pp. doi: 10.1142/S0219199712500058.  Google Scholar

[21]

M. Struwe, A global compactness result for elliptic boundary value problems involving limiting nonlinearities, Math. Z., 187 (1984), 511-517.  doi: 10.1007/BF01174186.  Google Scholar

[22]

H. Triebel, Theory of Function Spaces. III, Monographs in Mathematics, 100. Birkhäuser Verlag, Basel, 2006.  Google Scholar

[23]

H. Triebel, Theory of Function Spaces [Reprint of 1983 edition]. Modern Birkhäuser Classics. Birkhäuser/Springer Basel AG, Basel, 2010.  Google Scholar

[24]

M. Willem, Minimax Theorems, Progress Nonlinear Differential Equations Appl. 24. Birkhäuser Boston, Inc., Boston, MA, 1996. doi: 10.1007/978-1-4612-4146-1.  Google Scholar

[25]

S. Yan, A global compactness result for quasilinear elliptic equations with critical Sobolev exponents, Chinese Ann. Math. Ser. A, 16 (1995), 397-402.   Google Scholar

[1]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[2]

Lingwei Ma, Zhenqiu Zhang. Monotonicity for fractional Laplacian systems in unbounded Lipschitz domains. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 537-552. doi: 10.3934/dcds.2020268

[3]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[4]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[5]

Wenqiang Zhao, Yijin Zhang. High-order Wong-Zakai approximations for non-autonomous stochastic $ p $-Laplacian equations on $ \mathbb{R}^N $. Communications on Pure & Applied Analysis, 2021, 20 (1) : 243-280. doi: 10.3934/cpaa.2020265

[6]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[7]

Andrew D. Lewis. Erratum for "nonholonomic and constrained variational mechanics". Journal of Geometric Mechanics, 2020, 12 (4) : 671-675. doi: 10.3934/jgm.2020033

[8]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[9]

Evan Greif, Daniel Kaplan, Robert S. Strichartz, Samuel C. Wiese. Spectrum of the Laplacian on regular polyhedra. Communications on Pure & Applied Analysis, 2021, 20 (1) : 193-214. doi: 10.3934/cpaa.2020263

[10]

Shipra Singh, Aviv Gibali, Xiaolong Qin. Cooperation in traffic network problems via evolutionary split variational inequalities. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020170

[11]

Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115

[12]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[13]

Xin Guo, Lei Shi. Preface of the special issue on analysis in data science: Methods and applications. Mathematical Foundations of Computing, 2020, 3 (4) : i-ii. doi: 10.3934/mfc.2020026

[14]

Shun Zhang, Jianlin Jiang, Su Zhang, Yibing Lv, Yuzhen Guo. ADMM-type methods for generalized multi-facility Weber problem. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020171

[15]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[16]

Haiyu Liu, Rongmin Zhu, Yuxian Geng. Gorenstein global dimensions relative to balanced pairs. Electronic Research Archive, 2020, 28 (4) : 1563-1571. doi: 10.3934/era.2020082

[17]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[18]

Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344

[19]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

[20]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (106)
  • HTML views (202)
  • Cited by (6)

Other articles
by authors

[Back to Top]