We define and study the fractional Laplacian and the fractional perimeter of a set in Carnot groups and we compare the perimeter with the asymptotic behaviour of the fractional heat semigroup.
Citation: |
[1] |
L. Ambrosio, M. Miranda Jr and D. Pallara, Some fine properties of $BV$ functions on Wiener spaces, Anal. Geom. Metr. Spaces, 3 (2015), 212-230.
doi: 10.1515/agms-2015-0013.![]() ![]() ![]() |
[2] |
L. Angiuli, M. Miranda Jr, D. Pallara and F. Paronetto, $BV$ functions and parabolic initial boundary value problems on domains, Ann. Mat. Pura Appl.(4), 188 (2009), 297-311.
doi: 10.1007/s10231-008-0076-3.![]() ![]() ![]() |
[3] |
R. M. Blumenthal and R. K. Getoor, Some theorems on stable processes, Trans. Amer. Math. Soc., 95 (1960), 263-273.
doi: 10.1090/S0002-9947-1960-0119247-6.![]() ![]() ![]() |
[4] |
item BLUbook (MR2363343) A. Bonfiglioli, E. Lanconelli and F. Uguzzoni,
Stratified Lie Groups and Potential Theory for Their Sub-Laplacians,
Springer, 2007.
![]() |
[5] |
N. Bouleau and F. Hirsch,
Dirichlet Forms and Analysis on Wiener Spaces, vol 14 of De Gruyter studies in Mathematics, De Gruyter, 1991.
doi: 10.1515/9783110858389.![]() ![]() ![]() |
[6] |
J. Bourgain, H. Brezis and P. Mironescu, Another look at Sobolev spaces, in: J. L. Menaldi, E. Rofman and A. Sulem (Eds), in: J. L. Menaldi,
E. Rofman and A. Sulem (Eds), Optimal Control and Partial Differential Equations (volume
in Honour of A. Bensoussan’s 60th birthday), IOS Press, (2001), 439-455.
![]() ![]() |
[7] |
M. Bramanti, M. Miranda Jr and D. Pallara, Two characterization of $BV$ functions on Carnot groups via the heat semigroup, Int. Math. Res. Not, 17 (2012), 3845-3876.
doi: 10.1093/imrn/rnr170.![]() ![]() ![]() |
[8] |
C. Bucur and E. Valdinoci,
Nonlocal Diffusion and Applications, UMI Lectute Notes 20, Springer, 2016.
doi: 10.1007/978-3-319-28739-3.![]() ![]() ![]() |
[9] |
L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260.
doi: 10.1080/03605300600987306.![]() ![]() ![]() |
[10] |
L. Capogna, D. Danielli, S. D. Pauls and J. T. Tyson,
An Introduction to the Heisenberg Group and the Sub-Riemannian Isoperimetric Problem, Birkhäuser, 2007.
![]() ![]() |
[11] |
Z.-Q. Chen and T. Kumagai, Heat kernel estimates for jump processes of mixed types on metric measure spaces, Probab. Theory Related Fields, 140 (2008), 277-317.
doi: 10.1007/s00440-007-0070-5.![]() ![]() ![]() |
[12] |
W. Cygan and T. Grzywny, Heat content for convolution semigroups, J. Math. Anal. Appl, 446 (2017), 1393-1414.
doi: 10.1016/j.jmaa.2016.09.051.![]() ![]() ![]() |
[13] |
J. Davila, On an open question about functions of bounded variation, Calc. Var. Partial Differential Equations, 15 (2001), 519-527.
doi: 10.1007/s005260100135.![]() ![]() ![]() |
[14] |
E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136) (2012), 521-573.
doi: 10.1016/j.bulsci.2011.12.004.![]() ![]() ![]() |
[15] |
F. Ferrari and B. Franchi, Harnack inequality for fractional sub-Laplacians in Carnot groups, Math. Z., 279 (2015), 435-458.
doi: 10.1007/s00209-014-1376-5.![]() ![]() ![]() |
[16] |
G. B. Folland, Subelliptic estimates and function spaces on nilpotent Lie groups, Ark. Mat., 13 (1975), 161-207.
doi: 10.1007/BF02386204.![]() ![]() ![]() |
[17] |
G. B. Folland and E. Stein,
Hardy Spaces on Homogeneous Groups, Princeton University Press, 1982.
![]() ![]() |
[18] |
M. Kwaśnicki, Ten equivalent definitions of the fractional Laplace operator, Frac. Calc. Appl. Anal., 20 (2017), 17-51.
doi: 10.1515/fca-2017-0002.![]() ![]() ![]() |
[19] |
M. Ludwig, Anisotropic fractional perimeters, J. Diff. Geom., 96 (2014), 77-93.
doi: 10.4310/jdg/1391192693.![]() ![]() ![]() |
[20] |
M. Ludwig, Anisotropic fractional Sobolev norms, Adv. Math., 252 (2014), 150-157.
doi: 10.1016/j.aim.2013.10.024.![]() ![]() ![]() |
[21] |
M. Miranda Jr, D. Pallara, F. Paronetto and M. Preunkert, Short-time heat flow and functions of bounded variation in $\mathbf{R}^{n}$, Ann. Fac. Sci. Toulouse Math., 16 (2007), 125-145.
doi: 10.5802/afst.1142.![]() ![]() ![]() |
[22] |
H. M. Nguyen, A. Pinamonti, M. Squassina and E. Vecchi, New characterization of magnetic Sobolev spaces,
arXiv:1703. 09801.
![]() |
[23] |
A. Pinamonti, M. Squassina and E. Vecchi, Magnetic BV functions and the Bourgain-Brezis-Mironescu formula Adv. Calc. Var. (2017).
doi: 10.1515/acv-2017-0019.![]() ![]() |
[24] |
A. Pinamonti, M. Squassina and E. Vecchi, The Maz'ya-Shaposhnikova limit in the magnetic setting, J. Math. Anal. Appl., 449 (2017), 1152-1159.
doi: 10.1016/j.jmaa.2016.12.065.![]() ![]() ![]() |
[25] |
A. Ponce, A new approach to Sobolev spaces and connections to $Γ$-convergence, Calc. Var. Partial Differential Equations, 19 (2004), 229-255.
doi: 10.1007/s00526-003-0195-z.![]() ![]() ![]() |
[26] |
K. Saka, Besov spaces and Sobolev spaces on a nilpotent Lie group, Tohoku Math. Journ., 31 (1979), 383-437.
doi: 10.2748/tmj/1178229728.![]() ![]() ![]() |
[27] |
A. Sánchez-Calle, Fundamental solutions and geometry of the sum of squares of vector fields, Invent. Math., 78 (1984), 143-160.
doi: 10.1007/BF01388721.![]() ![]() ![]() |
[28] |
item St (MR1232192) E. M. Stein,
Harmonic Analysis: Real-Variable Methods, Orthogonality and Oscillatory Integrals, Princeton University Press, 1993.
![]() |
[29] |
P. R. Stinga and J. L. Torrea, Extension problem and Harnack's inequality for some fractional operators, Comm. Partial Differential Equations, 35 (2010), 2092-2122.
doi: 10.1080/03605301003735680.![]() ![]() ![]() |
[30] |
K. Yosida,
Functional Analysis Springer, Sixth Ed. , 1980.
![]() ![]() |