In this paper we study some boundary operators of a class of Bessel-type Littlewood-Paley extensions whose prototype is
$\begin{align*}Δ_x u(x, y) +\frac{1-2s}{y} \frac{\partial u}{\partial y}(x, y)+\frac{\partial^2 u}{\partial y^2}(x, y)&=0 &&\text{for }x∈\mathbb{R}^d, y>0, \\ u(x, 0)&=f(x) &&\text{for }x∈\mathbb{R}^d.\end{align*}$
In particular, we show that with a logarithmic scaling one can capture the failure of analyticity of these extensions in the limiting cases $s=k ∈ \mathbb{N}$ .
Citation: |
[1] |
L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260.
doi: 10.1080/03605300600987306.![]() ![]() ![]() |
[2] |
S.-Y. A. Chang and M. d. M. González, Fractional Laplacian in conformal geometry, Adv. Math., 226 (2011), 1410-1432.
doi: 10.1016/j.aim.2010.07.016.![]() ![]() ![]() |
[3] |
D. DeBlassie, The first exit time of a two-dimensional symmetric stable process from a wedge, Ann. Probab., 18 (1990), 1034-1070.
doi: 10.1214/aop/1176990735.![]() ![]() ![]() |
[4] |
I. S. Gradshteyn and M. Ryzhik,
Table of Integrals, Series and Products 7$^{th}$ edition, Academic Press, 2007.
![]() |
[5] |
P. Kim, R. Song and Z. Vondraček, On harmonic functions for trace processes, Math. Nachr., 284 (2011), 1889-1902.
doi: 10.1002/mana.200910008.![]() ![]() ![]() |
[6] |
M. Marias, Littlewood-Paley-Stein theory and Bessel diffusions, Bull. Sci. Math. (2), 111 (1987), 313-331.
![]() ![]() |
[7] |
S. A. Molčanov and E. Ostrovskiǐ, Symmetric stable processes as traces of degenerate diffusion processes, Teor. Verojatnost. i Primenen., 14 (1969), 127-130.
![]() ![]() |
[8] |
M. Renardy and R. C. Rogers,
An Introduction to Partial Differential Equations Texts in Applied Mathematics, Springer-Verlag, New York, 2004.
![]() ![]() |
[9] |
L. Roncal and P. R. Stinga, Fractional Laplacian on the torus Commun. Contemp. Math. 18 (2016), 1550033, 26pp.
doi: 10.1142/S0219199715500339.![]() ![]() ![]() |
[10] |
E. M. Stein,
Singular Integrals and Differentiability Properties of Functions Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N. J. , 1970.
![]() ![]() |
[11] |
P. R. Stinga and J. L. Torrea, Extension problem and Harnack's inequality for some fractional operators, Comm. Partial Differential Equations, 35 (2010), 2092-2122.
doi: 10.1080/03605301003735680.![]() ![]() ![]() |
[12] |
R. Yang, On higher order extensions for the fractional Laplacian, preprint, arXiv: 1302.4413.
![]() |
[13] |
K. Yoshida,
Functional Analysis Classics in Mathematics, Reprint of the 6$^{th}$ edition, Springer-Verlag, Berlin, 1995.
doi: 10.1007/978-3-642-61859-8.![]() ![]() ![]() |