June  2018, 11(3): 533-545. doi: 10.3934/dcdss.2018029

Multiple solutions of fractional Kirchhoff equations involving a critical nonlinearity

1. 

College of Science, China University of Mining and Technology, Xuzhou 221116, China

2. 

College of Mathematica and Statistics, Chongqing Jiaotong University, Chongqing 400074, China

* Corresponding author: W. Liu.

Received  May 2017 Revised  August 2017 Published  October 2017

In this paper, we are concerned with the following fractional Kirchhoff equation
$\begin{align*}\left\{\begin{array}{ll}\left(a+b∈t_{\mathbb R^N}|(-Δ)^{\frac{s}{2}}u|^2\right)(-Δ)^su=\lambda u+μ|u|^{q-2}u+|u|^{2_{s}^*-2}u&\ \ \mbox{in}\ \ Ω, \\ u=0&\ \ \mbox{in}\ \mathbb R^N\backslashΩ, \end{array}\right.\end{align*}$
where
$N>2s$
,
$a, b, \lambda, μ>0$
,
$s∈(0, 1)$
and
$Ω$
is a bounded open domain with continuous boundary. Here
$(-Δ)^s$
is the fractional Laplacian operator. For
$2<q≤q\min\{4, 2_s^*\}$
, we prove that if
$b$
is small or
$μ$
is large, the problem above admits multiple solutions by virtue of a linking theorem due to G. Cerami, D. Fortunato and M. Struwe [7, Theorem 2.5].
Citation: Hua Jin, Wenbin Liu, Jianjun Zhang. Multiple solutions of fractional Kirchhoff equations involving a critical nonlinearity. Discrete & Continuous Dynamical Systems - S, 2018, 11 (3) : 533-545. doi: 10.3934/dcdss.2018029
References:
[1]

V. Ambrosio and T. Isernia, A multiplicity result for a fractional Kirchhoff equation in $\mathbb R^N$ with a general nonlinearity Commun. Contemp. Math. published online (2017). doi: 10.1142/S0219199717500547.  Google Scholar

[2]

D. Applebaum, Lévy processes-from probability theory to finance and quantum groups, Notices of the American Math Soc., 51 (2004), 1336-1347.   Google Scholar

[3]

G. AutuoriA. Fiscella and P. Pucci, Stationary Kirchhoff problems invoving a fractional elliptic operator and a critical nonlinearity, Nonlinear Anal., 125 (2015), 699-714.  doi: 10.1016/j.na.2015.06.014.  Google Scholar

[4]

B. BarriosE. ColoradoR. Servadei and F. Soria, A critical fractional equation with concave-convex power nonlinearities, Ann. Inst. H. Poincare Anal. Nonlineaire, 32 (2015), 875-900.  doi: 10.1016/j.anihpc.2014.04.003.  Google Scholar

[5]

P. BartoloV. Benci and D. Fortunato, Abstract critical point theorem and applications to some nonlinear problems with ''strong" resonance at infinity, Nonlinear Anal., 7 (1983), 981-1012.  doi: 10.1016/0362-546X(83)90115-3.  Google Scholar

[6]

H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Commun. Pure Apple. Math., 36 (1983), 437-477.  doi: 10.1002/cpa.3160360405.  Google Scholar

[7]

G. CeramiD. Fortunato and M. Struwe, Bifurcation and multiplicity results for nonlinear elliptic problems involving critical Sobolev exponents, Ann. Inst. H. Poincare Anal. Non Lineaire, 1 (1984), 341-350.  doi: 10.1016/S0294-1449(16)30416-4.  Google Scholar

[8]

Z. ChenN. Shioji and W. Zou, Ground state and multiple solutions for a critical exponent problem, Nonlinear Differ. Equ. Appl., 19 (2012), 253-277.  doi: 10.1007/s00030-011-0127-0.  Google Scholar

[9]

Y. DengS. Peng and W. Shuai, Existence and asymptotic behavior of nodal solutions for the Kirchhoff-type problems in $\mathbb{R}^3$, J. Funct. Anal., 269 (2015), 3500-3527.  doi: 10.1016/j.jfa.2015.09.012.  Google Scholar

[10]

E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 512-573.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[11]

A. FiscellaG. M. Bisci and R. Servadei, Bifurcation and multiplicity results for critical nonlocal fractional Laplacian problems, Bull. Sci. Math., 140 (2016), 14-35.  doi: 10.1016/j.bulsci.2015.10.001.  Google Scholar

[12]

A. FiscellaR. Servadei and E. Valdinoci, Denisity properties for fractional Sobolev space, Ann. Acad. Sci. Fenn. Math., 40 (2015), 235-253.  doi: 10.5186/aasfm.2015.4009.  Google Scholar

[13]

A. Fiscella and E. Valdinoci, A critical Kirchhoff type problem involving a nonlocal operator, Nonlinear Anal., 94 (2014), 156-170.  doi: 10.1016/j.na.2013.08.011.  Google Scholar

[14]

Y. HeG. Li and S. Peng, Concentrating bound states for Kirchhoff type problems in $\mathbb R^3$ involving critical Sobolev exponents, Adv. Nonlinear Stud., 14 (2014), 483-510.  doi: 10.1515/ans-2014-0214.  Google Scholar

[15]

X. He and W. Zou, Existence and concentration behavior of positive solutions for a Kirchhoff equation in $\mathbb R^3$, J. Differential Equations, 252 (2012), 1813-1834.  doi: 10.1016/j.jde.2011.08.035.  Google Scholar

[16]

L. Jeanjean and S. Le Coz, An existence and stability result for standing waves of nonlinear Schröinger equations, Adv. Differential Equations, 11 (2006), 813-840.   Google Scholar

[17]

G. Kirchhoff, Mechanik Teubner, Leipzig, 1883. Google Scholar

[18]

N. Laskin, Fractional quantum mechanics and Levy path integrals, Physics Letters A, 268 (2000), 298-305.  doi: 10.1016/S0375-9601(00)00201-2.  Google Scholar

[19]

Y. LiuZ. Liu and Z. Ouyang, Multiplicity results for the Kirchhlff type equations with critical growth, Appl. Math. Lett., 63 (2017), 118-123.  doi: 10.1016/j.aml.2016.07.029.  Google Scholar

[20]

Z. Liu, M. Squassina and J. Zhang, Ground states for fractional Kirchhoff equations with critical nonlinearity in low dimension Nonlinear Differ. Equ. Appl. 24 (2017), Art. 50, 32 pp. doi: 10.1007/s00030-017-0473-7.  Google Scholar

[21]

D. Naimen, Positive solutions of Kirchhoff type elliptic equations involving a critical Sobolev exponent, Nonlinear Differ. Equ. Appl., 21 (2014), 885-914.  doi: 10.1007/s00030-014-0271-4.  Google Scholar

[22]

D. Naimen, On the Brezis-Nirenberg problem with a Kirchhoff Type Perturbation, Adv. Nonlinear Stud., 15 (2015), 135-156.  doi: 10.1515/ans-2015-0107.  Google Scholar

[23]

G. Palatucci and E. Pisante, Improved Sobolev embeddings, profile decomposition, and concentration-compactness for fractional Sobolev spaces, Calc, Var. Partial Differential Equations, 50 (2014), 799-829.  doi: 10.1007/s00526-013-0656-y.  Google Scholar

[24]

K. Perera and Z. Zhang, Nontrivial solutions of Kirchhoff-type problems via the Yang index, J. Differential Equations, 221 (2006), 246-255.  doi: 10.1016/j.jde.2005.03.006.  Google Scholar

[25]

P. Pucci and S. Saldi, Critical stationary Kirchhoff equations in $\mathbb R^N$ involving nonlocal operators, Rev. Mat. Iberoam., 32 (2016), 1-22.  doi: 10.4171/RMI/879.  Google Scholar

[26]

M. Schether and W. Zou, On the Brezis-Nirenberg problem, Arch. Ration. Mech. Anal., 197 (2010), 337-356.  doi: 10.1007/s00205-009-0288-8.  Google Scholar

[27]

R. Servadei and E. Valdinoci, Variational methods for non-local operators of elliptic type, Discrete Contin. Dyn. Syst., 33 (2013), 2015-2137.   Google Scholar

[28]

R. Servadei and E. Valdinoci, Mountain pass solutions for non-local elliptic operators, J. Math. Anal. Appl., 389 (2012), 887-898.  doi: 10.1016/j.jmaa.2011.12.032.  Google Scholar

[29]

R. Servadei and E. Valdinoci, A Brezis-Nirenberg result for non-local critical equations in low dimension, Commun. Pure Appl. Anal., 12 (2013), 2445-2464.  doi: 10.3934/cpaa.2013.12.2445.  Google Scholar

[30]

R. Servadei and E. Valdinoci, Fractional Laplacian equations with critical Sobolev exponent, Rev. Mat. Complut., 28 (2015), 655-676.  doi: 10.1007/s13163-015-0170-1.  Google Scholar

[31]

R. Servadei and E. Valdinoci, The Brezis-Nirenberg result for the fractional Laplacian, Trans. Amer. Math. Soc., 367 (2015), 67-102.  doi: 10.1090/S0002-9947-2014-05884-4.  Google Scholar

[32]

Y. Sire and E. Valdinoci, Fractional Laplacian phase transtion and boundary reactions: A geometric inequality and a symmetry result, J. Funct. Anal., 256 (2009), 1842-1864.  doi: 10.1016/j.jfa.2009.01.020.  Google Scholar

[33]

J. WangL. TianJ. Xu and F. Zhang, Multiplicity and concentration of positive solutions for a Kirchhoff type problem with critical growth, J. Differential Equations, 253 (2012), 2314-2351.  doi: 10.1016/j.jde.2012.05.023.  Google Scholar

[34]

M. XiangP. PucciM. Squassina and B. Zhang, Nonlocal Schrödinger-Kirchhoff equations with external magnetic field, Discrete Contin. Dyn. Syst., 37 (2017), 1631-1649.  doi: 10.3934/dcds.2017067.  Google Scholar

[35]

M. XiangB. Zhang and M. Yang, A fractional Kirchhoff-type problem in $\mathbb R^N$ without the (AR) condition, Complex Var. Elliptic Equ., 61 (2016), 1481-1493.  doi: 10.1080/17476933.2016.1182519.  Google Scholar

show all references

References:
[1]

V. Ambrosio and T. Isernia, A multiplicity result for a fractional Kirchhoff equation in $\mathbb R^N$ with a general nonlinearity Commun. Contemp. Math. published online (2017). doi: 10.1142/S0219199717500547.  Google Scholar

[2]

D. Applebaum, Lévy processes-from probability theory to finance and quantum groups, Notices of the American Math Soc., 51 (2004), 1336-1347.   Google Scholar

[3]

G. AutuoriA. Fiscella and P. Pucci, Stationary Kirchhoff problems invoving a fractional elliptic operator and a critical nonlinearity, Nonlinear Anal., 125 (2015), 699-714.  doi: 10.1016/j.na.2015.06.014.  Google Scholar

[4]

B. BarriosE. ColoradoR. Servadei and F. Soria, A critical fractional equation with concave-convex power nonlinearities, Ann. Inst. H. Poincare Anal. Nonlineaire, 32 (2015), 875-900.  doi: 10.1016/j.anihpc.2014.04.003.  Google Scholar

[5]

P. BartoloV. Benci and D. Fortunato, Abstract critical point theorem and applications to some nonlinear problems with ''strong" resonance at infinity, Nonlinear Anal., 7 (1983), 981-1012.  doi: 10.1016/0362-546X(83)90115-3.  Google Scholar

[6]

H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Commun. Pure Apple. Math., 36 (1983), 437-477.  doi: 10.1002/cpa.3160360405.  Google Scholar

[7]

G. CeramiD. Fortunato and M. Struwe, Bifurcation and multiplicity results for nonlinear elliptic problems involving critical Sobolev exponents, Ann. Inst. H. Poincare Anal. Non Lineaire, 1 (1984), 341-350.  doi: 10.1016/S0294-1449(16)30416-4.  Google Scholar

[8]

Z. ChenN. Shioji and W. Zou, Ground state and multiple solutions for a critical exponent problem, Nonlinear Differ. Equ. Appl., 19 (2012), 253-277.  doi: 10.1007/s00030-011-0127-0.  Google Scholar

[9]

Y. DengS. Peng and W. Shuai, Existence and asymptotic behavior of nodal solutions for the Kirchhoff-type problems in $\mathbb{R}^3$, J. Funct. Anal., 269 (2015), 3500-3527.  doi: 10.1016/j.jfa.2015.09.012.  Google Scholar

[10]

E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 512-573.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[11]

A. FiscellaG. M. Bisci and R. Servadei, Bifurcation and multiplicity results for critical nonlocal fractional Laplacian problems, Bull. Sci. Math., 140 (2016), 14-35.  doi: 10.1016/j.bulsci.2015.10.001.  Google Scholar

[12]

A. FiscellaR. Servadei and E. Valdinoci, Denisity properties for fractional Sobolev space, Ann. Acad. Sci. Fenn. Math., 40 (2015), 235-253.  doi: 10.5186/aasfm.2015.4009.  Google Scholar

[13]

A. Fiscella and E. Valdinoci, A critical Kirchhoff type problem involving a nonlocal operator, Nonlinear Anal., 94 (2014), 156-170.  doi: 10.1016/j.na.2013.08.011.  Google Scholar

[14]

Y. HeG. Li and S. Peng, Concentrating bound states for Kirchhoff type problems in $\mathbb R^3$ involving critical Sobolev exponents, Adv. Nonlinear Stud., 14 (2014), 483-510.  doi: 10.1515/ans-2014-0214.  Google Scholar

[15]

X. He and W. Zou, Existence and concentration behavior of positive solutions for a Kirchhoff equation in $\mathbb R^3$, J. Differential Equations, 252 (2012), 1813-1834.  doi: 10.1016/j.jde.2011.08.035.  Google Scholar

[16]

L. Jeanjean and S. Le Coz, An existence and stability result for standing waves of nonlinear Schröinger equations, Adv. Differential Equations, 11 (2006), 813-840.   Google Scholar

[17]

G. Kirchhoff, Mechanik Teubner, Leipzig, 1883. Google Scholar

[18]

N. Laskin, Fractional quantum mechanics and Levy path integrals, Physics Letters A, 268 (2000), 298-305.  doi: 10.1016/S0375-9601(00)00201-2.  Google Scholar

[19]

Y. LiuZ. Liu and Z. Ouyang, Multiplicity results for the Kirchhlff type equations with critical growth, Appl. Math. Lett., 63 (2017), 118-123.  doi: 10.1016/j.aml.2016.07.029.  Google Scholar

[20]

Z. Liu, M. Squassina and J. Zhang, Ground states for fractional Kirchhoff equations with critical nonlinearity in low dimension Nonlinear Differ. Equ. Appl. 24 (2017), Art. 50, 32 pp. doi: 10.1007/s00030-017-0473-7.  Google Scholar

[21]

D. Naimen, Positive solutions of Kirchhoff type elliptic equations involving a critical Sobolev exponent, Nonlinear Differ. Equ. Appl., 21 (2014), 885-914.  doi: 10.1007/s00030-014-0271-4.  Google Scholar

[22]

D. Naimen, On the Brezis-Nirenberg problem with a Kirchhoff Type Perturbation, Adv. Nonlinear Stud., 15 (2015), 135-156.  doi: 10.1515/ans-2015-0107.  Google Scholar

[23]

G. Palatucci and E. Pisante, Improved Sobolev embeddings, profile decomposition, and concentration-compactness for fractional Sobolev spaces, Calc, Var. Partial Differential Equations, 50 (2014), 799-829.  doi: 10.1007/s00526-013-0656-y.  Google Scholar

[24]

K. Perera and Z. Zhang, Nontrivial solutions of Kirchhoff-type problems via the Yang index, J. Differential Equations, 221 (2006), 246-255.  doi: 10.1016/j.jde.2005.03.006.  Google Scholar

[25]

P. Pucci and S. Saldi, Critical stationary Kirchhoff equations in $\mathbb R^N$ involving nonlocal operators, Rev. Mat. Iberoam., 32 (2016), 1-22.  doi: 10.4171/RMI/879.  Google Scholar

[26]

M. Schether and W. Zou, On the Brezis-Nirenberg problem, Arch. Ration. Mech. Anal., 197 (2010), 337-356.  doi: 10.1007/s00205-009-0288-8.  Google Scholar

[27]

R. Servadei and E. Valdinoci, Variational methods for non-local operators of elliptic type, Discrete Contin. Dyn. Syst., 33 (2013), 2015-2137.   Google Scholar

[28]

R. Servadei and E. Valdinoci, Mountain pass solutions for non-local elliptic operators, J. Math. Anal. Appl., 389 (2012), 887-898.  doi: 10.1016/j.jmaa.2011.12.032.  Google Scholar

[29]

R. Servadei and E. Valdinoci, A Brezis-Nirenberg result for non-local critical equations in low dimension, Commun. Pure Appl. Anal., 12 (2013), 2445-2464.  doi: 10.3934/cpaa.2013.12.2445.  Google Scholar

[30]

R. Servadei and E. Valdinoci, Fractional Laplacian equations with critical Sobolev exponent, Rev. Mat. Complut., 28 (2015), 655-676.  doi: 10.1007/s13163-015-0170-1.  Google Scholar

[31]

R. Servadei and E. Valdinoci, The Brezis-Nirenberg result for the fractional Laplacian, Trans. Amer. Math. Soc., 367 (2015), 67-102.  doi: 10.1090/S0002-9947-2014-05884-4.  Google Scholar

[32]

Y. Sire and E. Valdinoci, Fractional Laplacian phase transtion and boundary reactions: A geometric inequality and a symmetry result, J. Funct. Anal., 256 (2009), 1842-1864.  doi: 10.1016/j.jfa.2009.01.020.  Google Scholar

[33]

J. WangL. TianJ. Xu and F. Zhang, Multiplicity and concentration of positive solutions for a Kirchhoff type problem with critical growth, J. Differential Equations, 253 (2012), 2314-2351.  doi: 10.1016/j.jde.2012.05.023.  Google Scholar

[34]

M. XiangP. PucciM. Squassina and B. Zhang, Nonlocal Schrödinger-Kirchhoff equations with external magnetic field, Discrete Contin. Dyn. Syst., 37 (2017), 1631-1649.  doi: 10.3934/dcds.2017067.  Google Scholar

[35]

M. XiangB. Zhang and M. Yang, A fractional Kirchhoff-type problem in $\mathbb R^N$ without the (AR) condition, Complex Var. Elliptic Equ., 61 (2016), 1481-1493.  doi: 10.1080/17476933.2016.1182519.  Google Scholar

[1]

Vincenzo Ambrosio. Multiple concentrating solutions for a fractional Kirchhoff equation with magnetic fields. Discrete & Continuous Dynamical Systems - A, 2020, 40 (2) : 781-815. doi: 10.3934/dcds.2020062

[2]

Mingqi Xiang, Binlin Zhang. A critical fractional p-Kirchhoff type problem involving discontinuous nonlinearity. Discrete & Continuous Dynamical Systems - S, 2019, 12 (2) : 413-433. doi: 10.3934/dcdss.2019027

[3]

Monica Musso, Donato Passaseo. Multiple solutions of Neumann elliptic problems with critical nonlinearity. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 301-320. doi: 10.3934/dcds.1999.5.301

[4]

Anran Li, Jiabao Su. Multiple nontrivial solutions to a $p$-Kirchhoff equation. Communications on Pure & Applied Analysis, 2016, 15 (1) : 91-102. doi: 10.3934/cpaa.2016.15.91

[5]

Guangze Gu, Xianhua Tang, Youpei Zhang. Ground states for asymptotically periodic fractional Kirchhoff equation with critical Sobolev exponent. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3181-3200. doi: 10.3934/cpaa.2019143

[6]

Yinbin Deng, Wentao Huang. Least energy solutions for fractional Kirchhoff type equations involving critical growth. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : 1929-1954. doi: 10.3934/dcdss.2019126

[7]

Fengshuang Gao, Yuxia Guo. Multiple solutions for a critical quasilinear equation with Hardy potential. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : 1977-2003. doi: 10.3934/dcdss.2019128

[8]

Yinbin Deng, Shuangjie Peng, Li Wang. Existence of multiple solutions for a nonhomogeneous semilinear elliptic equation involving critical exponent. Discrete & Continuous Dynamical Systems - A, 2012, 32 (3) : 795-826. doi: 10.3934/dcds.2012.32.795

[9]

Claudianor O. Alves, Giovany M. Figueiredo, Gaetano Siciliano. Ground state solutions for fractional scalar field equations under a general critical nonlinearity. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2199-2215. doi: 10.3934/cpaa.2019099

[10]

Wulong Liu, Guowei Dai. Multiple solutions for a fractional nonlinear Schrödinger equation with local potential. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2105-2123. doi: 10.3934/cpaa.2017104

[11]

Xing Liu, Yijing Sun. Multiple positive solutions for Kirchhoff type problems with singularity. Communications on Pure & Applied Analysis, 2013, 12 (2) : 721-733. doi: 10.3934/cpaa.2013.12.721

[12]

Wenjing Chen. Multiplicity of solutions for a fractional Kirchhoff type problem. Communications on Pure & Applied Analysis, 2015, 14 (5) : 2009-2020. doi: 10.3934/cpaa.2015.14.2009

[13]

Yinbin Deng, Yi Li, Xiujuan Yan. Nodal solutions for a quasilinear Schrödinger equation with critical nonlinearity and non-square diffusion. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2487-2508. doi: 10.3934/cpaa.2015.14.2487

[14]

Mamoru Okamoto. Asymptotic behavior of solutions to a higher-order KdV-type equation with critical nonlinearity. Evolution Equations & Control Theory, 2019, 8 (3) : 567-601. doi: 10.3934/eect.2019027

[15]

Ian Schindler, Kyril Tintarev. Mountain pass solutions to semilinear problems with critical nonlinearity. Conference Publications, 2007, 2007 (Special) : 912-919. doi: 10.3934/proc.2007.2007.912

[16]

Kyril Tintarev. Positive solutions of elliptic equations with a critical oscillatory nonlinearity. Conference Publications, 2007, 2007 (Special) : 974-981. doi: 10.3934/proc.2007.2007.974

[17]

Qi-Lin Xie, Xing-Ping Wu, Chun-Lei Tang. Existence and multiplicity of solutions for Kirchhoff type problem with critical exponent. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2773-2786. doi: 10.3934/cpaa.2013.12.2773

[18]

Rui-Qi Liu, Chun-Lei Tang, Jia-Feng Liao, Xing-Ping Wu. Positive solutions of Kirchhoff type problem with singular and critical nonlinearities in dimension four. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1841-1856. doi: 10.3934/cpaa.2016006

[19]

Peng Chen, Xiaochun Liu. Multiplicity of solutions to Kirchhoff type equations with critical Sobolev exponent. Communications on Pure & Applied Analysis, 2018, 17 (1) : 113-125. doi: 10.3934/cpaa.2018007

[20]

Qilin Xie, Jianshe Yu. Bounded state solutions of Kirchhoff type problems with a critical exponent in high dimension. Communications on Pure & Applied Analysis, 2019, 18 (1) : 129-158. doi: 10.3934/cpaa.2019008

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (79)
  • HTML views (209)
  • Cited by (0)

Other articles
by authors

[Back to Top]