June  2018, 11(3): 561-576. doi: 10.3934/dcdss.2018031

Bifurcation results for problems with fractional Trudinger-Moser nonlinearity

1. 

Department of Mathematical Sciences, Florida Institute of Technology, 150 W University Blvd, Melbourne, FL 32901, USA

2. 

Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore, Via dei Musei 41, I-25121 Brescia, Italy

Received  May 2017 Revised  August 2017 Published  October 2017

Fund Project: The second author is member of Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM).

By using a suitable topological argument based on cohomological linking and by exploiting a Trudinger-Moser inequality in fractional spaces recently obtained, we prove existence of multiple solutions for a problem involving the nonlinear fractional laplacian and a related critical exponential nonlinearity. This extends the literature for the $N$-Laplacian operator.

Citation: Kanishka Perera, Marco Squassina. Bifurcation results for problems with fractional Trudinger-Moser nonlinearity. Discrete & Continuous Dynamical Systems - S, 2018, 11 (3) : 561-576. doi: 10.3934/dcdss.2018031
References:
[1]

Adimurthi, Existence of positive solutions of the semilinear Dirichlet problem with critical growth for the $n$-Laplacian, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 17 (1990), 393-413. Google Scholar

[2]

Adimurthi and S. L. Yadava, Bifurcation results for semilinear elliptic problems with critical exponent in $\mathbb R^2$, Nonlinear Anal., 14 (1990), 607-612. doi: 10.1016/0362-546X(90)90065-O. Google Scholar

[3]

P. BartoloV. Benci and D. Fortunato, Abstract critical point theorems and applications to some nonlinear problems with strong resonance at infinity, Nonlinear Anal., 7 (1983), 981-1012. doi: 10.1016/0362-546X(83)90115-3. Google Scholar

[4]

V. Benci, On critical point theory for indefinite functionals in the presence of symmetries, Trans. Amer. Math. Soc., 274 (1982), 533-572. doi: 10.1090/S0002-9947-1982-0675067-X. Google Scholar

[5]

L. BrascoE. Parini and M. Squassina, Stability of variational eigenvalues for the fractional $p$-Laplacian, Discrete Contin. Dyn. Syst. A, 36 (2016), 1813-1845. doi: 10.3934/dcds.2016.36.1813. Google Scholar

[6]

H. Brezis and E. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., 88 (1983), 486-490. doi: 10.2307/2044999. Google Scholar

[7]

L. Carleson and A. Chang, On the existence of an extremal function for an inequality of J. Moser, Bull. Sci. Math., 110 (1986), 113-127. Google Scholar

[8]

D. G. de FigueiredoO. H. Miyagaki and B. Ruf, Elliptic equations in $\mathbb R^2$ with nonlinearities in the critical growth range, Calc. Var. Partial Differential Equations, 3 (1995), 139-153. doi: 10.1007/BF01205003. Google Scholar

[9]

D. G. de Figueiredo, O. H. Miyagaki and B. Ruf, Corrigendum to Elliptic equations in $\mathbb R^2$ with nonlinearities in the critical growth range Calc. Var. Partial Differential Equations 4 (1996), p203. doi: 10.1007/BF01189953. Google Scholar

[10]

J. M. do'O, Semilinear dirichlet problems for the $N$-Laplacian in $\mathbb R^N$ with nonlinearities in the critical growth range, Differential Integral Equations, 9 (1996), 967-979. Google Scholar

[11]

J. M. do'OO. H. Miyagaki and M. Squassina, Nonautonomous fractional problems with exponential growth, NoDEA Nonlinear Differential Equations Applications, 22 (2015), 1395-1410. doi: 10.1007/s00030-015-0327-0. Google Scholar

[12]

J. M. do'OO. H. Miyagaki and M. Squassina, Ground states of nonlocal scalar field equations with Trudinger-Moser critical nonlinearity, Topol. Meth. Nonlinear Anal., 48 (2016), 477-492. Google Scholar

[13]

E. R. Fadell and P. H. Rabinowitz, Generalized cohomological index theories for Lie group actions with an application to bifurcation questions for Hamiltonian systems, Invent. Math., 45 (1978), 139-174. doi: 10.1007/BF01390270. Google Scholar

[14]

J. GiacomoniP. K. Mishra and K. Sreenadh, Fractional elliptic equations with critical exponential nonlinearity, Adv. Nonlinear Anal., 5 (2016), 57-74. doi: 10.1515/anona-2015-0081. Google Scholar

[15]

A. IannizzottoS. Mosconi and M. Squassina, Global Holder regularity for the fractional $p$-Laplacian, Rev. Mat. Iberoam., 32 (2016), 1355-1394. doi: 10.4171/RMI/921. Google Scholar

[16]

A. Iannizzotto and M. Squassina, $1/2$-Laplacian problems with exponential nonlinearity, J. Math. Anal. Appl., 414 (2014), 372-385. doi: 10.1016/j.jmaa.2013.12.059. Google Scholar

[17]

S. Iula, A note on the Moser-Trudinger inequality in Sobolev-Slobodeckij spaces in dimension one, , (2016). Google Scholar

[18]

S. IulaA. Maalaoui and L. Martinazzi, A fractional Moser-Trudinger type inequality in one dimension and its critical points, Differential Integral Equations, 29 (2016), 455-492. Google Scholar

[19]

H. KozonoT. Sato and H. Wadade, Upper bound of the best constant of a Trudinger-Moser inequality and its application to a Gagliardo-Nirenberg inequality, Indiana Univ. Math. J., 55 (2006), 1951-1974. doi: 10.1512/iumj.2006.55.2743. Google Scholar

[20]

P.-L. Lions, The concentration-compactness principle in the calculus of variations. The limit case I, Rev. Mat. Iberoam., 1 (1985), 145-201. doi: 10.4171/RMI/6. Google Scholar

[21]

L. Martinazzi, Fractional Adams-Moser-Trudinger type inequalities, Nonlinear Anal., 127 (2015), 263-278. doi: 10.1016/j.na.2015.06.034. Google Scholar

[22]

S. Mosconi and M. Squassina, Recent progresses in the theory of nonlinear nonlocal problems, Bruno Pini Math. Analysis Sem., 2016 (2016), 147-164. Google Scholar

[23]

J. Moser, A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J., 20 (1970/71), 1077-1092. doi: 10.1512/iumj.1971.20.20101. Google Scholar

[24]

T. Ozawa, On critical cases of Sobolev's inequalitites, J. Funct. Anal., 127 (1995), 259-269. doi: 10.1006/jfan.1995.1012. Google Scholar

[25]

E. Parini and B. Ruf, On the Moser-Trudinger inequality in fractional Sobolev-Slobodeckij spaces, J. Anal. Math., to appear, arXiv: 1607.07681.Google Scholar

[26]

K. PereraR. P. Agarwal and D. O'Regan, Morse Theoretic Aspects of $p$-Laplacian Type Operators 161, Morse Theoretic Aspects of p{Laplacian Type Operators 161, Mathematical surveys and monographs, American Mathematical Society, Providence, RI, (2010). doi: 10.1090/surv/161. Google Scholar

[27]

N. S. Trudinger, On imbeddings into Orlicz spaces and some applications, J. Math. Mech., 17 (1967), 473-483. Google Scholar

[28]

Y. Yang and K. Perera, $N$-Laplacian problems with critical Trudinger-Moser nonlinearities, Ann. Sc. Norm. Super. Pisa Cl. Sci., 16 (2016), 1123-1138. Google Scholar

show all references

References:
[1]

Adimurthi, Existence of positive solutions of the semilinear Dirichlet problem with critical growth for the $n$-Laplacian, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 17 (1990), 393-413. Google Scholar

[2]

Adimurthi and S. L. Yadava, Bifurcation results for semilinear elliptic problems with critical exponent in $\mathbb R^2$, Nonlinear Anal., 14 (1990), 607-612. doi: 10.1016/0362-546X(90)90065-O. Google Scholar

[3]

P. BartoloV. Benci and D. Fortunato, Abstract critical point theorems and applications to some nonlinear problems with strong resonance at infinity, Nonlinear Anal., 7 (1983), 981-1012. doi: 10.1016/0362-546X(83)90115-3. Google Scholar

[4]

V. Benci, On critical point theory for indefinite functionals in the presence of symmetries, Trans. Amer. Math. Soc., 274 (1982), 533-572. doi: 10.1090/S0002-9947-1982-0675067-X. Google Scholar

[5]

L. BrascoE. Parini and M. Squassina, Stability of variational eigenvalues for the fractional $p$-Laplacian, Discrete Contin. Dyn. Syst. A, 36 (2016), 1813-1845. doi: 10.3934/dcds.2016.36.1813. Google Scholar

[6]

H. Brezis and E. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., 88 (1983), 486-490. doi: 10.2307/2044999. Google Scholar

[7]

L. Carleson and A. Chang, On the existence of an extremal function for an inequality of J. Moser, Bull. Sci. Math., 110 (1986), 113-127. Google Scholar

[8]

D. G. de FigueiredoO. H. Miyagaki and B. Ruf, Elliptic equations in $\mathbb R^2$ with nonlinearities in the critical growth range, Calc. Var. Partial Differential Equations, 3 (1995), 139-153. doi: 10.1007/BF01205003. Google Scholar

[9]

D. G. de Figueiredo, O. H. Miyagaki and B. Ruf, Corrigendum to Elliptic equations in $\mathbb R^2$ with nonlinearities in the critical growth range Calc. Var. Partial Differential Equations 4 (1996), p203. doi: 10.1007/BF01189953. Google Scholar

[10]

J. M. do'O, Semilinear dirichlet problems for the $N$-Laplacian in $\mathbb R^N$ with nonlinearities in the critical growth range, Differential Integral Equations, 9 (1996), 967-979. Google Scholar

[11]

J. M. do'OO. H. Miyagaki and M. Squassina, Nonautonomous fractional problems with exponential growth, NoDEA Nonlinear Differential Equations Applications, 22 (2015), 1395-1410. doi: 10.1007/s00030-015-0327-0. Google Scholar

[12]

J. M. do'OO. H. Miyagaki and M. Squassina, Ground states of nonlocal scalar field equations with Trudinger-Moser critical nonlinearity, Topol. Meth. Nonlinear Anal., 48 (2016), 477-492. Google Scholar

[13]

E. R. Fadell and P. H. Rabinowitz, Generalized cohomological index theories for Lie group actions with an application to bifurcation questions for Hamiltonian systems, Invent. Math., 45 (1978), 139-174. doi: 10.1007/BF01390270. Google Scholar

[14]

J. GiacomoniP. K. Mishra and K. Sreenadh, Fractional elliptic equations with critical exponential nonlinearity, Adv. Nonlinear Anal., 5 (2016), 57-74. doi: 10.1515/anona-2015-0081. Google Scholar

[15]

A. IannizzottoS. Mosconi and M. Squassina, Global Holder regularity for the fractional $p$-Laplacian, Rev. Mat. Iberoam., 32 (2016), 1355-1394. doi: 10.4171/RMI/921. Google Scholar

[16]

A. Iannizzotto and M. Squassina, $1/2$-Laplacian problems with exponential nonlinearity, J. Math. Anal. Appl., 414 (2014), 372-385. doi: 10.1016/j.jmaa.2013.12.059. Google Scholar

[17]

S. Iula, A note on the Moser-Trudinger inequality in Sobolev-Slobodeckij spaces in dimension one, , (2016). Google Scholar

[18]

S. IulaA. Maalaoui and L. Martinazzi, A fractional Moser-Trudinger type inequality in one dimension and its critical points, Differential Integral Equations, 29 (2016), 455-492. Google Scholar

[19]

H. KozonoT. Sato and H. Wadade, Upper bound of the best constant of a Trudinger-Moser inequality and its application to a Gagliardo-Nirenberg inequality, Indiana Univ. Math. J., 55 (2006), 1951-1974. doi: 10.1512/iumj.2006.55.2743. Google Scholar

[20]

P.-L. Lions, The concentration-compactness principle in the calculus of variations. The limit case I, Rev. Mat. Iberoam., 1 (1985), 145-201. doi: 10.4171/RMI/6. Google Scholar

[21]

L. Martinazzi, Fractional Adams-Moser-Trudinger type inequalities, Nonlinear Anal., 127 (2015), 263-278. doi: 10.1016/j.na.2015.06.034. Google Scholar

[22]

S. Mosconi and M. Squassina, Recent progresses in the theory of nonlinear nonlocal problems, Bruno Pini Math. Analysis Sem., 2016 (2016), 147-164. Google Scholar

[23]

J. Moser, A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J., 20 (1970/71), 1077-1092. doi: 10.1512/iumj.1971.20.20101. Google Scholar

[24]

T. Ozawa, On critical cases of Sobolev's inequalitites, J. Funct. Anal., 127 (1995), 259-269. doi: 10.1006/jfan.1995.1012. Google Scholar

[25]

E. Parini and B. Ruf, On the Moser-Trudinger inequality in fractional Sobolev-Slobodeckij spaces, J. Anal. Math., to appear, arXiv: 1607.07681.Google Scholar

[26]

K. PereraR. P. Agarwal and D. O'Regan, Morse Theoretic Aspects of $p$-Laplacian Type Operators 161, Morse Theoretic Aspects of p{Laplacian Type Operators 161, Mathematical surveys and monographs, American Mathematical Society, Providence, RI, (2010). doi: 10.1090/surv/161. Google Scholar

[27]

N. S. Trudinger, On imbeddings into Orlicz spaces and some applications, J. Math. Mech., 17 (1967), 473-483. Google Scholar

[28]

Y. Yang and K. Perera, $N$-Laplacian problems with critical Trudinger-Moser nonlinearities, Ann. Sc. Norm. Super. Pisa Cl. Sci., 16 (2016), 1123-1138. Google Scholar

[1]

Anouar Bahrouni. Trudinger-Moser type inequality and existence of solution for perturbed non-local elliptic operators with exponential nonlinearity. Communications on Pure & Applied Analysis, 2017, 16 (1) : 243-252. doi: 10.3934/cpaa.2017011

[2]

Kyril Tintarev. Is the Trudinger-Moser nonlinearity a true critical nonlinearity?. Conference Publications, 2011, 2011 (Special) : 1378-1384. doi: 10.3934/proc.2011.2011.1378

[3]

Xiaobao Zhu. Remarks on singular trudinger-moser type inequalities. Communications on Pure & Applied Analysis, 2020, 19 (1) : 103-112. doi: 10.3934/cpaa.2020006

[4]

Djairo G. De Figueiredo, João Marcos do Ó, Bernhard Ruf. Elliptic equations and systems with critical Trudinger-Moser nonlinearities. Discrete & Continuous Dynamical Systems - A, 2011, 30 (2) : 455-476. doi: 10.3934/dcds.2011.30.455

[5]

Tomasz Cieślak. Trudinger-Moser type inequality for radially symmetric functions in a ring and applications to Keller-Segel in a ring. Discrete & Continuous Dynamical Systems - B, 2013, 18 (10) : 2505-2512. doi: 10.3934/dcdsb.2013.18.2505

[6]

Xumin Wang. Singular Hardy-Trudinger-Moser inequality and the existence of extremals on the unit disc. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2717-2733. doi: 10.3934/cpaa.2019121

[7]

Nguyen Lam. Equivalence of sharp Trudinger-Moser-Adams Inequalities. Communications on Pure & Applied Analysis, 2017, 16 (3) : 973-998. doi: 10.3934/cpaa.2017047

[8]

Changliang Zhou, Chunqin Zhou. Extremal functions of Moser-Trudinger inequality involving Finsler-Laplacian. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2309-2328. doi: 10.3934/cpaa.2018110

[9]

Prosenjit Roy. On attainability of Moser-Trudinger inequality with logarithmic weights in higher dimensions. Discrete & Continuous Dynamical Systems - A, 2019, 39 (9) : 5207-5222. doi: 10.3934/dcds.2019212

[10]

Xianling Fan, Yuanzhang Zhao, Guifang Huang. Existence of solutions for the $p-$Laplacian with crossing nonlinearity. Discrete & Continuous Dynamical Systems - A, 2002, 8 (4) : 1019-1024. doi: 10.3934/dcds.2002.8.1019

[11]

Futoshi Takahashi. Singular extremal solutions to a Liouville-Gelfand type problem with exponential nonlinearity. Conference Publications, 2015, 2015 (special) : 1025-1033. doi: 10.3934/proc.2015.1025

[12]

Soohyun Bae, Yūki Naito. Separation structure of radial solutions for semilinear elliptic equations with exponential nonlinearity. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4537-4554. doi: 10.3934/dcds.2018198

[13]

Guozhen Lu, Yunyan Yang. Sharp constant and extremal function for the improved Moser-Trudinger inequality involving $L^p$ norm in two dimension. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 963-979. doi: 10.3934/dcds.2009.25.963

[14]

Hua Jin, Wenbin Liu, Jianjun Zhang. Multiple solutions of fractional Kirchhoff equations involving a critical nonlinearity. Discrete & Continuous Dynamical Systems - S, 2018, 11 (3) : 533-545. doi: 10.3934/dcdss.2018029

[15]

Alfonso Castro, Benjamin Preskill. Existence of solutions for a semilinear wave equation with non-monotone nonlinearity. Discrete & Continuous Dynamical Systems - A, 2010, 28 (2) : 649-658. doi: 10.3934/dcds.2010.28.649

[16]

Satoshi Hashimoto, Mitsuharu Ôtani. Existence of nontrivial solutions for some elliptic equations with supercritical nonlinearity in exterior domains. Discrete & Continuous Dynamical Systems - A, 2007, 19 (2) : 323-333. doi: 10.3934/dcds.2007.19.323

[17]

Peter Poláčik, Darío A. Valdebenito. Existence of quasiperiodic solutions of elliptic equations on the entire space with a quadratic nonlinearity. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1-25. doi: 10.3934/dcdss.2020077

[18]

Antonio Greco, Antonio Iannizzotto. Existence and convexity of solutions of the fractional heat equation. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2201-2226. doi: 10.3934/cpaa.2017109

[19]

Eugenia N. Petropoulou. On some difference equations with exponential nonlinearity. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2587-2594. doi: 10.3934/dcdsb.2017098

[20]

Nguyen Lam, Guozhen Lu. Existence of nontrivial solutions to Polyharmonic equations with subcritical and critical exponential growth. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 2187-2205. doi: 10.3934/dcds.2012.32.2187

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (53)
  • HTML views (174)
  • Cited by (0)

Other articles
by authors

[Back to Top]