By using a suitable topological argument based on cohomological linking and by exploiting a Trudinger-Moser inequality in fractional spaces recently obtained, we prove existence of multiple solutions for a problem involving the nonlinear fractional laplacian and a related critical exponential nonlinearity. This extends the literature for the $N$ -Laplacian operator.
Citation: |
[1] |
Adimurthi, Existence of positive solutions of the semilinear Dirichlet problem with critical growth for the $n$-Laplacian, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 17 (1990), 393-413.
![]() ![]() |
[2] |
Adimurthi and S. L. Yadava, Bifurcation results for semilinear elliptic problems with critical exponent in $\mathbb R^2$, Nonlinear Anal., 14 (1990), 607-612.
doi: 10.1016/0362-546X(90)90065-O.![]() ![]() ![]() |
[3] |
P. Bartolo, V. Benci and D. Fortunato, Abstract critical point theorems and applications to some nonlinear problems with strong resonance at infinity, Nonlinear Anal., 7 (1983), 981-1012.
doi: 10.1016/0362-546X(83)90115-3.![]() ![]() ![]() |
[4] |
V. Benci, On critical point theory for indefinite functionals in the presence of symmetries, Trans. Amer. Math. Soc., 274 (1982), 533-572.
doi: 10.1090/S0002-9947-1982-0675067-X.![]() ![]() ![]() |
[5] |
L. Brasco, E. Parini and M. Squassina, Stability of variational eigenvalues for the fractional $p$-Laplacian, Discrete Contin. Dyn. Syst. A, 36 (2016), 1813-1845.
doi: 10.3934/dcds.2016.36.1813.![]() ![]() ![]() |
[6] |
H. Brezis and E. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., 88 (1983), 486-490.
doi: 10.2307/2044999.![]() ![]() ![]() |
[7] |
L. Carleson and A. Chang, On the existence of an extremal function for an inequality of J. Moser, Bull. Sci. Math., 110 (1986), 113-127.
![]() ![]() |
[8] |
D. G. de Figueiredo, O. H. Miyagaki and B. Ruf, Elliptic equations in $\mathbb R^2$ with nonlinearities in the critical growth range, Calc. Var. Partial Differential Equations, 3 (1995), 139-153.
doi: 10.1007/BF01205003.![]() ![]() ![]() |
[9] |
D. G. de Figueiredo, O. H. Miyagaki and B. Ruf, Corrigendum to Elliptic equations in $\mathbb R^2$ with nonlinearities in the critical growth range Calc. Var. Partial Differential Equations 4 (1996), p203.
doi: 10.1007/BF01189953.![]() ![]() ![]() |
[10] |
J. M. do'O, Semilinear dirichlet problems for the $N$-Laplacian in $\mathbb R^N$ with nonlinearities in the critical growth range, Differential Integral Equations, 9 (1996), 967-979.
![]() ![]() |
[11] |
J. M. do'O, O. H. Miyagaki and M. Squassina, Nonautonomous fractional problems with exponential growth, NoDEA Nonlinear Differential Equations Applications, 22 (2015), 1395-1410.
doi: 10.1007/s00030-015-0327-0.![]() ![]() ![]() |
[12] |
J. M. do'O, O. H. Miyagaki and M. Squassina, Ground states of nonlocal scalar field equations with Trudinger-Moser critical nonlinearity, Topol. Meth. Nonlinear Anal., 48 (2016), 477-492.
![]() ![]() |
[13] |
E. R. Fadell and P. H. Rabinowitz, Generalized cohomological index theories for Lie group actions with an application to bifurcation questions for Hamiltonian systems, Invent. Math., 45 (1978), 139-174.
doi: 10.1007/BF01390270.![]() ![]() ![]() |
[14] |
J. Giacomoni, P. K. Mishra and K. Sreenadh, Fractional elliptic equations with critical exponential nonlinearity, Adv. Nonlinear Anal., 5 (2016), 57-74.
doi: 10.1515/anona-2015-0081.![]() ![]() ![]() |
[15] |
A. Iannizzotto, S. Mosconi and M. Squassina, Global Holder regularity for the fractional $p$-Laplacian, Rev. Mat. Iberoam., 32 (2016), 1355-1394.
doi: 10.4171/RMI/921.![]() ![]() ![]() |
[16] |
A. Iannizzotto and M. Squassina, $1/2$-Laplacian problems with exponential nonlinearity, J. Math. Anal. Appl., 414 (2014), 372-385.
doi: 10.1016/j.jmaa.2013.12.059.![]() ![]() ![]() |
[17] |
S. Iula, A note on the Moser-Trudinger inequality in Sobolev-Slobodeckij spaces in dimension one, , (2016).
![]() |
[18] |
S. Iula, A. Maalaoui and L. Martinazzi, A fractional Moser-Trudinger type inequality in one dimension and its critical points, Differential Integral Equations, 29 (2016), 455-492.
![]() ![]() |
[19] |
H. Kozono, T. Sato and H. Wadade, Upper bound of the best constant of a Trudinger-Moser inequality and its application to a Gagliardo-Nirenberg inequality, Indiana Univ. Math. J., 55 (2006), 1951-1974.
doi: 10.1512/iumj.2006.55.2743.![]() ![]() ![]() |
[20] |
P.-L. Lions, The concentration-compactness principle in the calculus of variations. The limit case I, Rev. Mat. Iberoam., 1 (1985), 145-201.
doi: 10.4171/RMI/6.![]() ![]() ![]() |
[21] |
L. Martinazzi, Fractional Adams-Moser-Trudinger type inequalities, Nonlinear Anal., 127 (2015), 263-278.
doi: 10.1016/j.na.2015.06.034.![]() ![]() ![]() |
[22] |
S. Mosconi and M. Squassina, Recent progresses in the theory of nonlinear nonlocal problems, Bruno Pini Math. Analysis Sem., 2016 (2016), 147-164.
![]() ![]() |
[23] |
J. Moser, A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J., 20 (1970/71), 1077-1092.
doi: 10.1512/iumj.1971.20.20101.![]() ![]() ![]() |
[24] |
T. Ozawa, On critical cases of Sobolev's inequalitites, J. Funct. Anal., 127 (1995), 259-269.
doi: 10.1006/jfan.1995.1012.![]() ![]() ![]() |
[25] |
E. Parini and B. Ruf, On the Moser-Trudinger inequality in fractional Sobolev-Slobodeckij
spaces, J. Anal. Math., to appear, arXiv: 1607.07681.
![]() |
[26] |
K. Perera, R. P. Agarwal and D. O'Regan, Morse Theoretic Aspects of $p$-Laplacian Type Operators 161, Morse Theoretic Aspects of p{Laplacian Type Operators 161, Mathematical surveys and monographs, American Mathematical Society, Providence, RI, (2010).
doi: 10.1090/surv/161.![]() ![]() ![]() |
[27] |
N. S. Trudinger, On imbeddings into Orlicz spaces and some applications, J. Math. Mech., 17 (1967), 473-483.
![]() ![]() |
[28] |
Y. Yang and K. Perera, $N$-Laplacian problems with critical Trudinger-Moser nonlinearities, Ann. Sc. Norm. Super. Pisa Cl. Sci., 16 (2016), 1123-1138.
![]() ![]() |