• Previous Article
    Closed-form solutions for the Lucas-Uzawa growth model with logarithmic utility preferences via the partial Hamiltonian approach
  • DCDS-S Home
  • This Issue
  • Next Article
    Unsteady MHD slip flow of non Newtonian power-law nanofluid over a moving surface with temperature dependent thermal conductivity
August  2018, 11(4): 631-641. doi: 10.3934/dcdss.2018038

Symmetries and conservation laws of a KdV6 equation

Department of Mathematics, University of Cádiz, PO.BOX 40, 11510 Puerto Real, Cádiz, Spain

* Corresponding author: M.S. Bruzón.

Received  December 2016 Revised  May 2017 Published  November 2017

In the present work we make an analysis of the Korteweg-de Vries of sixth order. We apply the classical Lie method of infinitesimals and the nonclassical method, due to Bluman and Cole, to deduce new symmetries of the equation which cannot be obtained by Lie classical method. Moreover, we obtain ten different conservation laws depending on the parameters and we conclude that potential symmetries project on the infinitesimals corresponding to the classical symmetries.

Citation: María Santos Bruzón, Tamara María Garrido. Symmetries and conservation laws of a KdV6 equation. Discrete & Continuous Dynamical Systems - S, 2018, 11 (4) : 631-641. doi: 10.3934/dcdss.2018038
References:
[1]

S. C. Anco and G. W. Bluman, Direct construction of conservation laws from field equations, Physical Review Letters, 78 (1997), 2869-2873.  doi: 10.1103/PhysRevLett.78.2869.  Google Scholar

[2]

S. C. Anco and G. W. Bluman, Direct construction method for conservation laws of partial differential equations part 2: General treatment, European Journal of Applied Mathematics, 13 (2002), 567-585.  doi: 10.1017/S0956792501004661.  Google Scholar

[3]

S. C. Anco and G. W. Bluman, Direct constrution method for conservation laws of partial differential equations part 1: Examples of conservation law classifications, European Journal of Applied Mathematics, 13 (2002), 545-566.  doi: 10.1017/S0956792501004661.  Google Scholar

[4]

S. C. Anco, Generalization of Noether’s theorem in modern form to non-variational partial differential equations, To appear in Fields Institute Communications: Recent progress and Modern Challen ges in Applied Mathematics, Modeling and Computational Science, 79 (2017), 119-182, arXiv: 1605.08734. doi: 10.1007/978-1-4939-6969-2_5.  Google Scholar

[5]

G. W. Bluman and J. Cole, General similarity solution of the heat equation, Journal of Mathematics and Mechanics, 18 (1969), 1025-1042.   Google Scholar

[6]

G. W. Bluman and S. Kumei, On the remarkable nonlinear diffusion equation, Journal of Mathematical Physics, 21 (1980), 1019-1023.  doi: 10.1063/1.524550.  Google Scholar

[7]

G. W. BlumanS. Kumei and G. J. Reid, New classes of symmetries for partial differential equations, Journal of Mathematics and Mechanics, 29 (1988), 806-811.  doi: 10.1063/1.527974.  Google Scholar

[8]

M. S. Bruzón, M. L. Gandarias and J. Ramírez, Symmetry and Perturbation Theory, World Scientific Publising Company, 2005. Google Scholar

[9]

M. S. BruzónT. M. Garrido and R. de la Rosa, Conservation laws and exact solutions of a Generalized Benjamin-Bona-Mahony-Burgers equation, Chaos, Solitons & Fractals, 89 (2016), 578-583.  doi: 10.1016/j.chaos.2016.03.034.  Google Scholar

[10]

P. J. CaudreyR. K. Dodd and J. D. Gibbon, New hierarchy of koterweg de vries equations, Proceedings of the Royal Society of London series A-mathematical physical and engineering sciences, 351 (1976), 407-422.  doi: 10.1098/rspa.1976.0149.  Google Scholar

[11]

P. A. Clarkson, Nonclassical symmetry reductions of the boussinesq equation, Chaos, Solitons & Fractals, 5 (1995), 2261-2301.  doi: 10.1016/0960-0779(94)E0099-B.  Google Scholar

[12]

P. A. Clarkson and T. J. Priestley, Symmetries of a generalised boussinesq equation, Institute of Mathematics and Statistics, University of Kent at Canterbury. Google Scholar

[13]

V. G. Drinfeld and V. V. Sokolov, Nonclassical symmetry reductions of the boussinesq equation, Doklady akademii nauk sssr, 258 (1981), 11-16.   Google Scholar

[14]

A. P. Fordy and J. Gibbons, Some remarkable nonlinear transformations, Physics Letters A, 75 (1980), p325. doi: 10.1016/0375-9601(80)90829-4.  Google Scholar

[15]

M. L. Gandarias and M. S. Bruzón, Classical and nonclassical symmetries of a generalized boussinesq equation, Journal of Nonlinear Mathematical Physics, 5 (1998), 8-12.  doi: 10.2991/jnmp.1998.5.1.2.  Google Scholar

[16]

T. M. GarridoA. A. KasatkinM. S. Bruzón and R. K. Gazizov, Lie symmetries and equivalence transformations for the barenblatt-gilman model, Journal of Computational and Applied Mathematics, 318 (2017), 253-258.  doi: 10.1016/j.cam.2016.09.023.  Google Scholar

[17]

W. Hereman and B. Huard, symmgrp2009. max: A macsyma/maxima program for the calculation of lie point symmetries of large systems of differential equations, http://inside.mines.edu/whereman/software.html (2009). Google Scholar

[18]

A. Karasu-Kalkanli, A. Karasu, A. Sakovich, S. Sakovich and R. Turhan, A new integrable generalization of the korteweg de vries equation, Journal of Mathematical Physics, 49 (2008), 073516, 10 pp. doi: 10.1063/1.2953474.  Google Scholar

[19]

D. J. Kaup, On the inverse scattering problem for cubic eigenvalue problems, Studies in Applied Mathematics, 62 (1980), 189-216.  doi: 10.1002/sapm1980623189.  Google Scholar

[20]

P. J. Olver, Applications of Lie Groups to Differential Equations, Springer-Verlag, 1986. doi: 10.1007/978-1-4684-0274-2.  Google Scholar

[21]

J. Satsuma and R. Hirota, A coupled kdv equation is one case of the four-reduction of the kp hierarchy, Journal of the Physical Society of Japan, 51 (1982), 3390-3397.  doi: 10.1143/JPSJ.51.3390.  Google Scholar

[22]

K. Sawada and T. Kotera, A method for finding n-soliton solutions of the k.d.v. equation and k.d.v. like equation, Progress of theoretical physics, 51 (1974), 1355-1367.  doi: 10.1143/PTP.51.1355.  Google Scholar

[23]

J. WeissM. Tabor and G. Carnevale, The painlevé property for partial differential equations, Journal of Mathematical Physics, 24 (1983), 522-526.  doi: 10.1063/1.525721.  Google Scholar

show all references

References:
[1]

S. C. Anco and G. W. Bluman, Direct construction of conservation laws from field equations, Physical Review Letters, 78 (1997), 2869-2873.  doi: 10.1103/PhysRevLett.78.2869.  Google Scholar

[2]

S. C. Anco and G. W. Bluman, Direct construction method for conservation laws of partial differential equations part 2: General treatment, European Journal of Applied Mathematics, 13 (2002), 567-585.  doi: 10.1017/S0956792501004661.  Google Scholar

[3]

S. C. Anco and G. W. Bluman, Direct constrution method for conservation laws of partial differential equations part 1: Examples of conservation law classifications, European Journal of Applied Mathematics, 13 (2002), 545-566.  doi: 10.1017/S0956792501004661.  Google Scholar

[4]

S. C. Anco, Generalization of Noether’s theorem in modern form to non-variational partial differential equations, To appear in Fields Institute Communications: Recent progress and Modern Challen ges in Applied Mathematics, Modeling and Computational Science, 79 (2017), 119-182, arXiv: 1605.08734. doi: 10.1007/978-1-4939-6969-2_5.  Google Scholar

[5]

G. W. Bluman and J. Cole, General similarity solution of the heat equation, Journal of Mathematics and Mechanics, 18 (1969), 1025-1042.   Google Scholar

[6]

G. W. Bluman and S. Kumei, On the remarkable nonlinear diffusion equation, Journal of Mathematical Physics, 21 (1980), 1019-1023.  doi: 10.1063/1.524550.  Google Scholar

[7]

G. W. BlumanS. Kumei and G. J. Reid, New classes of symmetries for partial differential equations, Journal of Mathematics and Mechanics, 29 (1988), 806-811.  doi: 10.1063/1.527974.  Google Scholar

[8]

M. S. Bruzón, M. L. Gandarias and J. Ramírez, Symmetry and Perturbation Theory, World Scientific Publising Company, 2005. Google Scholar

[9]

M. S. BruzónT. M. Garrido and R. de la Rosa, Conservation laws and exact solutions of a Generalized Benjamin-Bona-Mahony-Burgers equation, Chaos, Solitons & Fractals, 89 (2016), 578-583.  doi: 10.1016/j.chaos.2016.03.034.  Google Scholar

[10]

P. J. CaudreyR. K. Dodd and J. D. Gibbon, New hierarchy of koterweg de vries equations, Proceedings of the Royal Society of London series A-mathematical physical and engineering sciences, 351 (1976), 407-422.  doi: 10.1098/rspa.1976.0149.  Google Scholar

[11]

P. A. Clarkson, Nonclassical symmetry reductions of the boussinesq equation, Chaos, Solitons & Fractals, 5 (1995), 2261-2301.  doi: 10.1016/0960-0779(94)E0099-B.  Google Scholar

[12]

P. A. Clarkson and T. J. Priestley, Symmetries of a generalised boussinesq equation, Institute of Mathematics and Statistics, University of Kent at Canterbury. Google Scholar

[13]

V. G. Drinfeld and V. V. Sokolov, Nonclassical symmetry reductions of the boussinesq equation, Doklady akademii nauk sssr, 258 (1981), 11-16.   Google Scholar

[14]

A. P. Fordy and J. Gibbons, Some remarkable nonlinear transformations, Physics Letters A, 75 (1980), p325. doi: 10.1016/0375-9601(80)90829-4.  Google Scholar

[15]

M. L. Gandarias and M. S. Bruzón, Classical and nonclassical symmetries of a generalized boussinesq equation, Journal of Nonlinear Mathematical Physics, 5 (1998), 8-12.  doi: 10.2991/jnmp.1998.5.1.2.  Google Scholar

[16]

T. M. GarridoA. A. KasatkinM. S. Bruzón and R. K. Gazizov, Lie symmetries and equivalence transformations for the barenblatt-gilman model, Journal of Computational and Applied Mathematics, 318 (2017), 253-258.  doi: 10.1016/j.cam.2016.09.023.  Google Scholar

[17]

W. Hereman and B. Huard, symmgrp2009. max: A macsyma/maxima program for the calculation of lie point symmetries of large systems of differential equations, http://inside.mines.edu/whereman/software.html (2009). Google Scholar

[18]

A. Karasu-Kalkanli, A. Karasu, A. Sakovich, S. Sakovich and R. Turhan, A new integrable generalization of the korteweg de vries equation, Journal of Mathematical Physics, 49 (2008), 073516, 10 pp. doi: 10.1063/1.2953474.  Google Scholar

[19]

D. J. Kaup, On the inverse scattering problem for cubic eigenvalue problems, Studies in Applied Mathematics, 62 (1980), 189-216.  doi: 10.1002/sapm1980623189.  Google Scholar

[20]

P. J. Olver, Applications of Lie Groups to Differential Equations, Springer-Verlag, 1986. doi: 10.1007/978-1-4684-0274-2.  Google Scholar

[21]

J. Satsuma and R. Hirota, A coupled kdv equation is one case of the four-reduction of the kp hierarchy, Journal of the Physical Society of Japan, 51 (1982), 3390-3397.  doi: 10.1143/JPSJ.51.3390.  Google Scholar

[22]

K. Sawada and T. Kotera, A method for finding n-soliton solutions of the k.d.v. equation and k.d.v. like equation, Progress of theoretical physics, 51 (1974), 1355-1367.  doi: 10.1143/PTP.51.1355.  Google Scholar

[23]

J. WeissM. Tabor and G. Carnevale, The painlevé property for partial differential equations, Journal of Mathematical Physics, 24 (1983), 522-526.  doi: 10.1063/1.525721.  Google Scholar

[1]

Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301

[2]

Yi-Long Luo, Yangjun Ma. Low Mach number limit for the compressible inertial Qian-Sheng model of liquid crystals: Convergence for classical solutions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 921-966. doi: 10.3934/dcds.2020304

[3]

Ville Salo, Ilkka Törmä. Recoding Lie algebraic subshifts. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 1005-1021. doi: 10.3934/dcds.2020307

[4]

Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020354

[5]

Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020464

[6]

Qiao Liu. Local rigidity of certain solvable group actions on tori. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 553-567. doi: 10.3934/dcds.2020269

[7]

Kien Trung Nguyen, Vo Nguyen Minh Hieu, Van Huy Pham. Inverse group 1-median problem on trees. Journal of Industrial & Management Optimization, 2021, 17 (1) : 221-232. doi: 10.3934/jimo.2019108

[8]

George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003

[9]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[10]

Wenjun Liu, Yukun Xiao, Xiaoqing Yue. Classification of finite irreducible conformal modules over Lie conformal algebra $ \mathcal{W}(a, b, r) $. Electronic Research Archive, , () : -. doi: 10.3934/era.2020123

[11]

Noriyoshi Fukaya. Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential. Communications on Pure & Applied Analysis, 2021, 20 (1) : 121-143. doi: 10.3934/cpaa.2020260

[12]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020076

[13]

Kai Yang. Scattering of the focusing energy-critical NLS with inverse square potential in the radial case. Communications on Pure & Applied Analysis, 2021, 20 (1) : 77-99. doi: 10.3934/cpaa.2020258

[14]

Qianqian Han, Xiao-Song Yang. Qualitative analysis of a generalized Nosé-Hoover oscillator. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020346

[15]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[16]

Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020446

[17]

Yining Cao, Chuck Jia, Roger Temam, Joseph Tribbia. Mathematical analysis of a cloud resolving model including the ice microphysics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 131-167. doi: 10.3934/dcds.2020219

[18]

Xin Guo, Lei Shi. Preface of the special issue on analysis in data science: Methods and applications. Mathematical Foundations of Computing, 2020, 3 (4) : i-ii. doi: 10.3934/mfc.2020026

[19]

Martin Kalousek, Joshua Kortum, Anja Schlömerkemper. Mathematical analysis of weak and strong solutions to an evolutionary model for magnetoviscoelasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 17-39. doi: 10.3934/dcdss.2020331

[20]

Feifei Cheng, Ji Li. Geometric singular perturbation analysis of Degasperis-Procesi equation with distributed delay. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 967-985. doi: 10.3934/dcds.2020305

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (137)
  • HTML views (477)
  • Cited by (1)

Other articles
by authors

[Back to Top]