August  2018, 11(4): 691-705. doi: 10.3934/dcdss.2018043

A study of bifurcation parameters in travelling wave solutions of a damped forced Korteweg de Vries-Kuramoto Sivashinsky type equation

International Center for Applied Mathematics and Computational Bioengineering, Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, Kuwait

300 College Park, Department of Mathematics, University of Dayton, Dayton, Ohio 45469-2316, USA

Department of Mechanical Engineering, 300 College Park, University of Dayton, Dayton, Ohio 45469, USA

* Corresponding author: Muhammad Usman.

Authors name are in alphabetical order.

Received  January 2017 Revised  June 2017 Published  November 2017

In this work, we consider an ordinary differential equation obtained from a damped externally excited Korteweg de Vries-Kuramoto Sivashinsky (KdV-KS) type equation using traveling coordinates. We also include controls and delays and use an asymptotic perturbation method to analyze the stability of the traveling wave solutions. The existence of bounded solutions is presented as well. We consider the primary resonance defined by the detuning parameter. External-excitation and frequency-response curves are shown to exhibit jump and hysteresis phenomena (discontinuous transitions between two stable solutions) for the KdV-KS type equation. We have obtained the existence of the bounded solutions of the system obtained from an ordinary differential equation associated with the KdV-KS equation and also show the global stability for a special case when there is no external force.

Citation: Mudassar Imran, Youssef Raffoul, Muhammad Usman, Chi Zhang. A study of bifurcation parameters in travelling wave solutions of a damped forced Korteweg de Vries-Kuramoto Sivashinsky type equation. Discrete & Continuous Dynamical Systems - S, 2018, 11 (4) : 691-705. doi: 10.3934/dcdss.2018043
References:
[1]

T. B. BenjaminJ. L. Bona and J. J. Mahony, Model equations for long waves in nonlinear dispersive systems, Phil. Trans. R. Soc. London, Ser. A, 272 (1972), 47-78. doi: 10.1098/rsta.1972.0032. Google Scholar

[2]

D. J. Benney, Long waves on liquid films, J. Math. Phys., 45 (1966), 150-155. doi: 10.1002/sapm1966451150. Google Scholar

[3]

H. A. BiagioniJ. L. BonaR. J. Iorio Jr and M. Scialom, On the Korteweg-De Vries -Kuramoto-Sivashinsky Equation, Advances in Differential Equations, 1 (1996), 1-20. Google Scholar

[4]

J. Boussinesq, Théorie de l’intumescence liquide appelée "onde solitaire" ou "de translation", se propageant dans un canal rectangulaire, C. R. Acad. Sci. Paris, 72 (1871), 755-759. Google Scholar

[5]

J. Boussinesq, Théorie générale des mouvements, qui sont propagés dans un canal rectangulaire horizontal, C. R. Acad. Sci. Paris, 73 (1871), 256-260. Google Scholar

[6]

J. Boussinesq, Théorie des ondes et des remous qui se propagent le long dèn canal rectangulaire horizontal, en communiquant au liquide continu dans ce canal des vitesses sensiblement pareilles de la surface au fond, J. Math. Pures Appl., 17 (1872), 55-108. Google Scholar

[7]

J. Boussinesq, Essai sur la théorie des eaux courantes, Mémoires Présentés Par Divers Savants À L'Acad. des Sci. Inst. Nat. France, 23 (1877), 1-680. Google Scholar

[8]

B. I. CohenJ. A. KrommesW. M. Tang and M. N. Rosenbluth, Non-linear saturation of the dissipative trapped ion mode by mode coupling, Nucl. Fusion, 16 (1976), 971-992. doi: 10.1088/0029-5515/16/6/009. Google Scholar

[9]

A. T. Cousin and N. A. Larkin, Initial boundary value problem for the Kuramoto-Sivashinsky equation, Mat. Contemp., 18 (2000), 97-109. Google Scholar

[10]

P. W. Eloe and M. Usman, Fully Nonlinear Boundary Value Problems with Impulse, E. J. Qualitative Theory of Diff. Equ., 21 (2011), 1-11. Google Scholar

[11]

C. S. Gardner, J. M. Greene and M. D. Kruskal, Phys. Rev. Lett. , 19 (1967), 1095.Google Scholar

[12]

J.-M. Ghidaglia, Weakly damped forced korteweg-de vries equations behave as finite dimensional dynamical system in the long time, Journal of Differential Equations, 74 (1988), 369-390. doi: 10.1016/0022-0396(88)90010-1. Google Scholar

[13]

A. Granas and J. Dugundji, Fixed Point Theory, Springer-Verlag, New York, 2003. doi: 10.1007/978-0-387-21593-8. Google Scholar

[14]

R. Grimshaw and X. Tian, Periodic and chaotic behaviour in a reduction of the perturbed Korteweg-de Vries equation, Proc. R. Soc. Lond. A., 445 (1994), 1-21. doi: 10.1098/rspa.1994.0045. Google Scholar

[15]

J. K. Hale, Oscillations in Nonlinear Systems, McGraw-Hill Book Company, INC. , 1963. Google Scholar

[16]

J. Henrard and K. R. Meyer, Averaging and bifurcations in symmetric systems, SIAM Journal on Applied Mathematics, 32 (1977), 133-145. doi: 10.1137/0132011. Google Scholar

[17]

J. Henrard and K. R. Meyer, Averaging and bifurcations in symmetric systems, SIAM Journal on Applied Mathematics, 32 (1977), 133-145. doi: 10.1137/0132011. Google Scholar

[18]

J. Jones and W. C. Troy, Steady solutions of the Kuramoto-Sivashinsky equation for small wave speed, Journal Of Differential Equations, 96 (1992), 28-55. doi: 10.1016/0022-0396(92)90143-B. Google Scholar

[19]

P. Kent and J. Elgin, Travelling-waves of the Kuramoto-Sivashinsky equation:periodic multiplying bifurcations, Nonlinearity, 5 (1992), 899-919. doi: 10.1088/0951-7715/5/4/004. Google Scholar

[20]

Y. Kuramoto and T. Tsuzuki, On the formation of dissipative structures in reaction-diffusion systems, Prog. Theor. Phys., 54 (1975), 687-699. Google Scholar

[21]

D. J. Korteweg and G. de. Vries, On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves, Philos. Mag., 39 (1895), 422-443. doi: 10.1080/14786449508620739. Google Scholar

[22]

Y. Kuramoto, Diffusion-induced chaos in reactions systems, Suppl. Prog. Theor. Phys., 64 (1978), 346-367. doi: 10.1143/PTPS.64.346. Google Scholar

[23]

Y. Kuramoto and T. Tsuzuki, Persistent propagation of concentration waves in dissipative media far from thermal equilibrium, Prog. Theor. Phys., 55 (1976), 356-369. doi: 10.1143/PTP.55.356. Google Scholar

[24]

Y. Kuramoto and T. Yamada, Turbulent state in chemical reaction, Prog. Theor. Phys., 56 (1976), 724-740. doi: 10.1143/PTP.56.724. Google Scholar

[25]

C.-p. Li, Computing bifurcation diagrams of steady state Kuramoto-Sivashinsky equation by difference method, Journal of Shanghai University, 3 (1999), 248-250. doi: 10.1007/s11741-999-0067-7. Google Scholar

[26]

S. P. Lin, Finite amplitude side-band stability of a viscous film, J. Fluid Mech., 63 (1974), 417-429. doi: 10.1017/S0022112074001704. Google Scholar

[27]

A. Maccari, Bifurcation control in the Burgers-KdV equation, Phys. Scr. , 77 (2008), 035003. doi: 10.1088/0031-8949/77/03/035003. Google Scholar

[28]

A. Maccari, The nonlocal oscillator, Il Nuovo Cimento, 111 (1996), 917-930. doi: 10.1007/BF02743288. Google Scholar

[29]

A. Maccari, The dissipative nonlocal oscillator in resonance with a periodic excitation, Il Nuovo Cimento, 111 (1996), 1173-1186. Google Scholar

[30]

A. Maccari, Dissipative bidimensional systems and resonant excitations, International Journal of Nonlinear Mechanics, 33 (1998), 713-726. doi: 10.1016/S0020-7462(97)00045-0. Google Scholar

[31]

A. Maccari, Approximate solution of a class of nonlinear oscillators in resonance with a periodic excitation, Nonlinear Dynamics, 15 (1998), 329-343. doi: 10.1023/A:1008235820302. Google Scholar

[32]

M. B. A. Mansour, Traveling wave solutions of the Burgers-KdV equation with a fourth order term, Reports on Mathematical Physics, 63 (2009), 153-161. doi: 10.1016/S0034-4877(09)00010-X. Google Scholar

[33]

K. R. Meyer and D. S. Schmidt, Entrainment Domains, Funkcialaj Ekvacioj, 20 (1977), 171-192. Google Scholar

[34]

A. H. Nayfeh and B. Balachandran, Applied Nonlinear Dynamics. Analytical, Computational, and Experimental Methods, Wiley Series in Nonlinear Science, John Wiley & Sons, Inc. , New York, 1995. doi: 10.1002/9783527617548. Google Scholar

[35]

T. Ogawa, Travelling wave solutions to a perturbed Korteweg-de Vries equation, Hiroshima Math. J., 24 (1994), 401-422. Google Scholar

[36]

D. T. Papageorgiou, The route to chaos for the Kuramoto-Sivashinsky equation, NASA Contractor Report 187461, ICASE Report 90-78,1990.Google Scholar

[37]

H. Qiong-Wei and T. Jia-Shi, Dynamic bifurcation of a modified Kuramoto-Sivashinsky equation with higher order nonlinearity, Chin. Phys. B. , 20 (2011), 094701, 5pp.Google Scholar

[38]

J. S. Russell, Report on waves, Rept. 14th Meeting of the British Association for the Advancement of Science, John Murray, London, (1844), 311-390. Google Scholar

[39]

S. S. Shen, A Course on Nonlinear Waves, Nonlinear Topics in the Mathematical Sciences, Kluwer Academic Publishers, Dordrecht, 1993. doi: 10.1007/978-94-011-2102-6. Google Scholar

[40]

G. I. Sivashinsky, Nonlinear analysis of hydrodynamic instability in laminar flames, Acta Astronautica, 4 (1977), 1177-1206. doi: 10.1016/0094-5765(77)90096-0. Google Scholar

[41]

G. I. Sivashinsky, Self-turbulence in the motion of a free particle, Foundations of Physica, 8 (1978), 735-744. doi: 10.1007/BF00717503. Google Scholar

[42]

Y. Smyrlis and D. Papageorgiou, Predicting chaos for infinite dimensional dynamical systems: The Kuramoto-Sivashinsky equation, a case study, Applied Mathematics, Proc. Natl. Acad. Sci. USA, 88 (1991), 11129-11132. doi: 10.1073/pnas.88.24.11129. Google Scholar

[43]

E. Tadmor, The well-posedness of the Kuramoto-Sivashinsky equation, SIAM J. Math. Anal., 17 (1986), 884-893. doi: 10.1137/0517063. Google Scholar

show all references

References:
[1]

T. B. BenjaminJ. L. Bona and J. J. Mahony, Model equations for long waves in nonlinear dispersive systems, Phil. Trans. R. Soc. London, Ser. A, 272 (1972), 47-78. doi: 10.1098/rsta.1972.0032. Google Scholar

[2]

D. J. Benney, Long waves on liquid films, J. Math. Phys., 45 (1966), 150-155. doi: 10.1002/sapm1966451150. Google Scholar

[3]

H. A. BiagioniJ. L. BonaR. J. Iorio Jr and M. Scialom, On the Korteweg-De Vries -Kuramoto-Sivashinsky Equation, Advances in Differential Equations, 1 (1996), 1-20. Google Scholar

[4]

J. Boussinesq, Théorie de l’intumescence liquide appelée "onde solitaire" ou "de translation", se propageant dans un canal rectangulaire, C. R. Acad. Sci. Paris, 72 (1871), 755-759. Google Scholar

[5]

J. Boussinesq, Théorie générale des mouvements, qui sont propagés dans un canal rectangulaire horizontal, C. R. Acad. Sci. Paris, 73 (1871), 256-260. Google Scholar

[6]

J. Boussinesq, Théorie des ondes et des remous qui se propagent le long dèn canal rectangulaire horizontal, en communiquant au liquide continu dans ce canal des vitesses sensiblement pareilles de la surface au fond, J. Math. Pures Appl., 17 (1872), 55-108. Google Scholar

[7]

J. Boussinesq, Essai sur la théorie des eaux courantes, Mémoires Présentés Par Divers Savants À L'Acad. des Sci. Inst. Nat. France, 23 (1877), 1-680. Google Scholar

[8]

B. I. CohenJ. A. KrommesW. M. Tang and M. N. Rosenbluth, Non-linear saturation of the dissipative trapped ion mode by mode coupling, Nucl. Fusion, 16 (1976), 971-992. doi: 10.1088/0029-5515/16/6/009. Google Scholar

[9]

A. T. Cousin and N. A. Larkin, Initial boundary value problem for the Kuramoto-Sivashinsky equation, Mat. Contemp., 18 (2000), 97-109. Google Scholar

[10]

P. W. Eloe and M. Usman, Fully Nonlinear Boundary Value Problems with Impulse, E. J. Qualitative Theory of Diff. Equ., 21 (2011), 1-11. Google Scholar

[11]

C. S. Gardner, J. M. Greene and M. D. Kruskal, Phys. Rev. Lett. , 19 (1967), 1095.Google Scholar

[12]

J.-M. Ghidaglia, Weakly damped forced korteweg-de vries equations behave as finite dimensional dynamical system in the long time, Journal of Differential Equations, 74 (1988), 369-390. doi: 10.1016/0022-0396(88)90010-1. Google Scholar

[13]

A. Granas and J. Dugundji, Fixed Point Theory, Springer-Verlag, New York, 2003. doi: 10.1007/978-0-387-21593-8. Google Scholar

[14]

R. Grimshaw and X. Tian, Periodic and chaotic behaviour in a reduction of the perturbed Korteweg-de Vries equation, Proc. R. Soc. Lond. A., 445 (1994), 1-21. doi: 10.1098/rspa.1994.0045. Google Scholar

[15]

J. K. Hale, Oscillations in Nonlinear Systems, McGraw-Hill Book Company, INC. , 1963. Google Scholar

[16]

J. Henrard and K. R. Meyer, Averaging and bifurcations in symmetric systems, SIAM Journal on Applied Mathematics, 32 (1977), 133-145. doi: 10.1137/0132011. Google Scholar

[17]

J. Henrard and K. R. Meyer, Averaging and bifurcations in symmetric systems, SIAM Journal on Applied Mathematics, 32 (1977), 133-145. doi: 10.1137/0132011. Google Scholar

[18]

J. Jones and W. C. Troy, Steady solutions of the Kuramoto-Sivashinsky equation for small wave speed, Journal Of Differential Equations, 96 (1992), 28-55. doi: 10.1016/0022-0396(92)90143-B. Google Scholar

[19]

P. Kent and J. Elgin, Travelling-waves of the Kuramoto-Sivashinsky equation:periodic multiplying bifurcations, Nonlinearity, 5 (1992), 899-919. doi: 10.1088/0951-7715/5/4/004. Google Scholar

[20]

Y. Kuramoto and T. Tsuzuki, On the formation of dissipative structures in reaction-diffusion systems, Prog. Theor. Phys., 54 (1975), 687-699. Google Scholar

[21]

D. J. Korteweg and G. de. Vries, On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves, Philos. Mag., 39 (1895), 422-443. doi: 10.1080/14786449508620739. Google Scholar

[22]

Y. Kuramoto, Diffusion-induced chaos in reactions systems, Suppl. Prog. Theor. Phys., 64 (1978), 346-367. doi: 10.1143/PTPS.64.346. Google Scholar

[23]

Y. Kuramoto and T. Tsuzuki, Persistent propagation of concentration waves in dissipative media far from thermal equilibrium, Prog. Theor. Phys., 55 (1976), 356-369. doi: 10.1143/PTP.55.356. Google Scholar

[24]

Y. Kuramoto and T. Yamada, Turbulent state in chemical reaction, Prog. Theor. Phys., 56 (1976), 724-740. doi: 10.1143/PTP.56.724. Google Scholar

[25]

C.-p. Li, Computing bifurcation diagrams of steady state Kuramoto-Sivashinsky equation by difference method, Journal of Shanghai University, 3 (1999), 248-250. doi: 10.1007/s11741-999-0067-7. Google Scholar

[26]

S. P. Lin, Finite amplitude side-band stability of a viscous film, J. Fluid Mech., 63 (1974), 417-429. doi: 10.1017/S0022112074001704. Google Scholar

[27]

A. Maccari, Bifurcation control in the Burgers-KdV equation, Phys. Scr. , 77 (2008), 035003. doi: 10.1088/0031-8949/77/03/035003. Google Scholar

[28]

A. Maccari, The nonlocal oscillator, Il Nuovo Cimento, 111 (1996), 917-930. doi: 10.1007/BF02743288. Google Scholar

[29]

A. Maccari, The dissipative nonlocal oscillator in resonance with a periodic excitation, Il Nuovo Cimento, 111 (1996), 1173-1186. Google Scholar

[30]

A. Maccari, Dissipative bidimensional systems and resonant excitations, International Journal of Nonlinear Mechanics, 33 (1998), 713-726. doi: 10.1016/S0020-7462(97)00045-0. Google Scholar

[31]

A. Maccari, Approximate solution of a class of nonlinear oscillators in resonance with a periodic excitation, Nonlinear Dynamics, 15 (1998), 329-343. doi: 10.1023/A:1008235820302. Google Scholar

[32]

M. B. A. Mansour, Traveling wave solutions of the Burgers-KdV equation with a fourth order term, Reports on Mathematical Physics, 63 (2009), 153-161. doi: 10.1016/S0034-4877(09)00010-X. Google Scholar

[33]

K. R. Meyer and D. S. Schmidt, Entrainment Domains, Funkcialaj Ekvacioj, 20 (1977), 171-192. Google Scholar

[34]

A. H. Nayfeh and B. Balachandran, Applied Nonlinear Dynamics. Analytical, Computational, and Experimental Methods, Wiley Series in Nonlinear Science, John Wiley & Sons, Inc. , New York, 1995. doi: 10.1002/9783527617548. Google Scholar

[35]

T. Ogawa, Travelling wave solutions to a perturbed Korteweg-de Vries equation, Hiroshima Math. J., 24 (1994), 401-422. Google Scholar

[36]

D. T. Papageorgiou, The route to chaos for the Kuramoto-Sivashinsky equation, NASA Contractor Report 187461, ICASE Report 90-78,1990.Google Scholar

[37]

H. Qiong-Wei and T. Jia-Shi, Dynamic bifurcation of a modified Kuramoto-Sivashinsky equation with higher order nonlinearity, Chin. Phys. B. , 20 (2011), 094701, 5pp.Google Scholar

[38]

J. S. Russell, Report on waves, Rept. 14th Meeting of the British Association for the Advancement of Science, John Murray, London, (1844), 311-390. Google Scholar

[39]

S. S. Shen, A Course on Nonlinear Waves, Nonlinear Topics in the Mathematical Sciences, Kluwer Academic Publishers, Dordrecht, 1993. doi: 10.1007/978-94-011-2102-6. Google Scholar

[40]

G. I. Sivashinsky, Nonlinear analysis of hydrodynamic instability in laminar flames, Acta Astronautica, 4 (1977), 1177-1206. doi: 10.1016/0094-5765(77)90096-0. Google Scholar

[41]

G. I. Sivashinsky, Self-turbulence in the motion of a free particle, Foundations of Physica, 8 (1978), 735-744. doi: 10.1007/BF00717503. Google Scholar

[42]

Y. Smyrlis and D. Papageorgiou, Predicting chaos for infinite dimensional dynamical systems: The Kuramoto-Sivashinsky equation, a case study, Applied Mathematics, Proc. Natl. Acad. Sci. USA, 88 (1991), 11129-11132. doi: 10.1073/pnas.88.24.11129. Google Scholar

[43]

E. Tadmor, The well-posedness of the Kuramoto-Sivashinsky equation, SIAM J. Math. Anal., 17 (1986), 884-893. doi: 10.1137/0517063. Google Scholar

Figure 1.  Three solutions corresponding to $f=2.5$
Figure 2.  External Excitation Response Curve
Figure 3.  Frequency-Response Curve without delay
Figure 4.  Frequency-Response Curve with varying B
[1]

Piotr Zgliczyński. Steady state bifurcations for the Kuramoto-Sivashinsky equation: A computer assisted proof. Journal of Computational Dynamics, 2015, 2 (1) : 95-142. doi: 10.3934/jcd.2015.2.95

[2]

Kiah Wah Ong. Dynamic transitions of generalized Kuramoto-Sivashinsky equation. Discrete & Continuous Dynamical Systems - B, 2016, 21 (4) : 1225-1236. doi: 10.3934/dcdsb.2016.21.1225

[3]

Massimiliano Gubinelli. Rough solutions for the periodic Korteweg--de~Vries equation. Communications on Pure & Applied Analysis, 2012, 11 (2) : 709-733. doi: 10.3934/cpaa.2012.11.709

[4]

Eduardo Cerpa. Control of a Korteweg-de Vries equation: A tutorial. Mathematical Control & Related Fields, 2014, 4 (1) : 45-99. doi: 10.3934/mcrf.2014.4.45

[5]

M. Agrotis, S. Lafortune, P.G. Kevrekidis. On a discrete version of the Korteweg-De Vries equation. Conference Publications, 2005, 2005 (Special) : 22-29. doi: 10.3934/proc.2005.2005.22

[6]

Peng Gao. Null controllability with constraints on the state for the 1-D Kuramoto-Sivashinsky equation. Evolution Equations & Control Theory, 2015, 4 (3) : 281-296. doi: 10.3934/eect.2015.4.281

[7]

Milena Stanislavova, Atanas Stefanov. Effective estimates of the higher Sobolev norms for the Kuramoto-Sivashinsky equation. Conference Publications, 2009, 2009 (Special) : 729-738. doi: 10.3934/proc.2009.2009.729

[8]

Jared C. Bronski, Razvan C. Fetecau, Thomas N. Gambill. A note on a non-local Kuramoto-Sivashinsky equation. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 701-707. doi: 10.3934/dcds.2007.18.701

[9]

Eduardo Cerpa. Null controllability and stabilization of the linear Kuramoto-Sivashinsky equation. Communications on Pure & Applied Analysis, 2010, 9 (1) : 91-102. doi: 10.3934/cpaa.2010.9.91

[10]

D. Hilhorst, L. A. Peletier, A. I. Rotariu, G. Sivashinsky. Global attractor and inertial sets for a nonlocal Kuramoto-Sivashinsky equation. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 557-580. doi: 10.3934/dcds.2004.10.557

[11]

Yuncherl Choi, Jongmin Han, Chun-Hsiung Hsia. Bifurcation analysis of the damped Kuramoto-Sivashinsky equation with respect to the period. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 1933-1957. doi: 10.3934/dcdsb.2015.20.1933

[12]

L. Dieci, M. S Jolly, Ricardo Rosa, E. S. Van Vleck. Error in approximation of Lyapunov exponents on inertial manifolds: The Kuramoto-Sivashinsky equation. Discrete & Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 555-580. doi: 10.3934/dcdsb.2008.9.555

[13]

Peng Gao. Averaging principle for stochastic Kuramoto-Sivashinsky equation with a fast oscillation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (11) : 5649-5684. doi: 10.3934/dcds.2018247

[14]

Peng Gao. Global exact controllability to the trajectories of the Kuramoto-Sivashinsky equation. Evolution Equations & Control Theory, 2019, 0 (0) : 1-11. doi: 10.3934/eect.2020002

[15]

Aslihan Demirkaya. The existence of a global attractor for a Kuramoto-Sivashinsky type equation in 2D. Conference Publications, 2009, 2009 (Special) : 198-207. doi: 10.3934/proc.2009.2009.198

[16]

Guolian Wang, Boling Guo. Stochastic Korteweg-de Vries equation driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5255-5272. doi: 10.3934/dcds.2015.35.5255

[17]

Zhaosheng Feng, Yu Huang. Approximate solution of the Burgers-Korteweg-de Vries equation. Communications on Pure & Applied Analysis, 2007, 6 (2) : 429-440. doi: 10.3934/cpaa.2007.6.429

[18]

Muhammad Usman, Bing-Yu Zhang. Forced oscillations of the Korteweg-de Vries equation on a bounded domain and their stability. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1509-1523. doi: 10.3934/dcds.2010.26.1509

[19]

Eduardo Cerpa, Emmanuelle Crépeau. Rapid exponential stabilization for a linear Korteweg-de Vries equation. Discrete & Continuous Dynamical Systems - B, 2009, 11 (3) : 655-668. doi: 10.3934/dcdsb.2009.11.655

[20]

Terence Tao. Two remarks on the generalised Korteweg de-Vries equation. Discrete & Continuous Dynamical Systems - A, 2007, 18 (1) : 1-14. doi: 10.3934/dcds.2007.18.1

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (71)
  • HTML views (381)
  • Cited by (0)

[Back to Top]