August  2018, 11(4): 691-705. doi: 10.3934/dcdss.2018043

A study of bifurcation parameters in travelling wave solutions of a damped forced Korteweg de Vries-Kuramoto Sivashinsky type equation

International Center for Applied Mathematics and Computational Bioengineering, Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, Kuwait

300 College Park, Department of Mathematics, University of Dayton, Dayton, Ohio 45469-2316, USA

Department of Mechanical Engineering, 300 College Park, University of Dayton, Dayton, Ohio 45469, USA

* Corresponding author: Muhammad Usman.

Authors name are in alphabetical order.

Received  January 2017 Revised  June 2017 Published  November 2017

In this work, we consider an ordinary differential equation obtained from a damped externally excited Korteweg de Vries-Kuramoto Sivashinsky (KdV-KS) type equation using traveling coordinates. We also include controls and delays and use an asymptotic perturbation method to analyze the stability of the traveling wave solutions. The existence of bounded solutions is presented as well. We consider the primary resonance defined by the detuning parameter. External-excitation and frequency-response curves are shown to exhibit jump and hysteresis phenomena (discontinuous transitions between two stable solutions) for the KdV-KS type equation. We have obtained the existence of the bounded solutions of the system obtained from an ordinary differential equation associated with the KdV-KS equation and also show the global stability for a special case when there is no external force.

Citation: Mudassar Imran, Youssef Raffoul, Muhammad Usman, Chi Zhang. A study of bifurcation parameters in travelling wave solutions of a damped forced Korteweg de Vries-Kuramoto Sivashinsky type equation. Discrete & Continuous Dynamical Systems - S, 2018, 11 (4) : 691-705. doi: 10.3934/dcdss.2018043
References:
[1]

T. B. BenjaminJ. L. Bona and J. J. Mahony, Model equations for long waves in nonlinear dispersive systems, Phil. Trans. R. Soc. London, Ser. A, 272 (1972), 47-78.  doi: 10.1098/rsta.1972.0032.  Google Scholar

[2]

D. J. Benney, Long waves on liquid films, J. Math. Phys., 45 (1966), 150-155.  doi: 10.1002/sapm1966451150.  Google Scholar

[3]

H. A. BiagioniJ. L. BonaR. J. Iorio Jr and M. Scialom, On the Korteweg-De Vries -Kuramoto-Sivashinsky Equation, Advances in Differential Equations, 1 (1996), 1-20.   Google Scholar

[4]

J. Boussinesq, Théorie de l’intumescence liquide appelée "onde solitaire" ou "de translation", se propageant dans un canal rectangulaire, C. R. Acad. Sci. Paris, 72 (1871), 755-759.   Google Scholar

[5]

J. Boussinesq, Théorie générale des mouvements, qui sont propagés dans un canal rectangulaire horizontal, C. R. Acad. Sci. Paris, 73 (1871), 256-260.   Google Scholar

[6]

J. Boussinesq, Théorie des ondes et des remous qui se propagent le long dèn canal rectangulaire horizontal, en communiquant au liquide continu dans ce canal des vitesses sensiblement pareilles de la surface au fond, J. Math. Pures Appl., 17 (1872), 55-108.   Google Scholar

[7]

J. Boussinesq, Essai sur la théorie des eaux courantes, Mémoires Présentés Par Divers Savants À L'Acad. des Sci. Inst. Nat. France, 23 (1877), 1-680.   Google Scholar

[8]

B. I. CohenJ. A. KrommesW. M. Tang and M. N. Rosenbluth, Non-linear saturation of the dissipative trapped ion mode by mode coupling, Nucl. Fusion, 16 (1976), 971-992.  doi: 10.1088/0029-5515/16/6/009.  Google Scholar

[9]

A. T. Cousin and N. A. Larkin, Initial boundary value problem for the Kuramoto-Sivashinsky equation, Mat. Contemp., 18 (2000), 97-109.   Google Scholar

[10]

P. W. Eloe and M. Usman, Fully Nonlinear Boundary Value Problems with Impulse, E. J. Qualitative Theory of Diff. Equ., 21 (2011), 1-11.   Google Scholar

[11]

C. S. Gardner, J. M. Greene and M. D. Kruskal, Phys. Rev. Lett. , 19 (1967), 1095. Google Scholar

[12]

J.-M. Ghidaglia, Weakly damped forced korteweg-de vries equations behave as finite dimensional dynamical system in the long time, Journal of Differential Equations, 74 (1988), 369-390.  doi: 10.1016/0022-0396(88)90010-1.  Google Scholar

[13]

A. Granas and J. Dugundji, Fixed Point Theory, Springer-Verlag, New York, 2003. doi: 10.1007/978-0-387-21593-8.  Google Scholar

[14]

R. Grimshaw and X. Tian, Periodic and chaotic behaviour in a reduction of the perturbed Korteweg-de Vries equation, Proc. R. Soc. Lond. A., 445 (1994), 1-21.  doi: 10.1098/rspa.1994.0045.  Google Scholar

[15]

J. K. Hale, Oscillations in Nonlinear Systems, McGraw-Hill Book Company, INC. , 1963.  Google Scholar

[16]

J. Henrard and K. R. Meyer, Averaging and bifurcations in symmetric systems, SIAM Journal on Applied Mathematics, 32 (1977), 133-145.  doi: 10.1137/0132011.  Google Scholar

[17]

J. Henrard and K. R. Meyer, Averaging and bifurcations in symmetric systems, SIAM Journal on Applied Mathematics, 32 (1977), 133-145.  doi: 10.1137/0132011.  Google Scholar

[18]

J. Jones and W. C. Troy, Steady solutions of the Kuramoto-Sivashinsky equation for small wave speed, Journal Of Differential Equations, 96 (1992), 28-55.  doi: 10.1016/0022-0396(92)90143-B.  Google Scholar

[19]

P. Kent and J. Elgin, Travelling-waves of the Kuramoto-Sivashinsky equation:periodic multiplying bifurcations, Nonlinearity, 5 (1992), 899-919.  doi: 10.1088/0951-7715/5/4/004.  Google Scholar

[20]

Y. Kuramoto and T. Tsuzuki, On the formation of dissipative structures in reaction-diffusion systems, Prog. Theor. Phys., 54 (1975), 687-699.   Google Scholar

[21]

D. J. Korteweg and G. de. Vries, On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves, Philos. Mag., 39 (1895), 422-443.  doi: 10.1080/14786449508620739.  Google Scholar

[22]

Y. Kuramoto, Diffusion-induced chaos in reactions systems, Suppl. Prog. Theor. Phys., 64 (1978), 346-367.  doi: 10.1143/PTPS.64.346.  Google Scholar

[23]

Y. Kuramoto and T. Tsuzuki, Persistent propagation of concentration waves in dissipative media far from thermal equilibrium, Prog. Theor. Phys., 55 (1976), 356-369.  doi: 10.1143/PTP.55.356.  Google Scholar

[24]

Y. Kuramoto and T. Yamada, Turbulent state in chemical reaction, Prog. Theor. Phys., 56 (1976), 724-740.  doi: 10.1143/PTP.56.724.  Google Scholar

[25]

C.-p. Li, Computing bifurcation diagrams of steady state Kuramoto-Sivashinsky equation by difference method, Journal of Shanghai University, 3 (1999), 248-250.  doi: 10.1007/s11741-999-0067-7.  Google Scholar

[26]

S. P. Lin, Finite amplitude side-band stability of a viscous film, J. Fluid Mech., 63 (1974), 417-429.  doi: 10.1017/S0022112074001704.  Google Scholar

[27]

A. Maccari, Bifurcation control in the Burgers-KdV equation, Phys. Scr. , 77 (2008), 035003. doi: 10.1088/0031-8949/77/03/035003.  Google Scholar

[28]

A. Maccari, The nonlocal oscillator, Il Nuovo Cimento, 111 (1996), 917-930.  doi: 10.1007/BF02743288.  Google Scholar

[29]

A. Maccari, The dissipative nonlocal oscillator in resonance with a periodic excitation, Il Nuovo Cimento, 111 (1996), 1173-1186.   Google Scholar

[30]

A. Maccari, Dissipative bidimensional systems and resonant excitations, International Journal of Nonlinear Mechanics, 33 (1998), 713-726.  doi: 10.1016/S0020-7462(97)00045-0.  Google Scholar

[31]

A. Maccari, Approximate solution of a class of nonlinear oscillators in resonance with a periodic excitation, Nonlinear Dynamics, 15 (1998), 329-343.  doi: 10.1023/A:1008235820302.  Google Scholar

[32]

M. B. A. Mansour, Traveling wave solutions of the Burgers-KdV equation with a fourth order term, Reports on Mathematical Physics, 63 (2009), 153-161.  doi: 10.1016/S0034-4877(09)00010-X.  Google Scholar

[33]

K. R. Meyer and D. S. Schmidt, Entrainment Domains, Funkcialaj Ekvacioj, 20 (1977), 171-192.   Google Scholar

[34]

A. H. Nayfeh and B. Balachandran, Applied Nonlinear Dynamics. Analytical, Computational, and Experimental Methods, Wiley Series in Nonlinear Science, John Wiley & Sons, Inc. , New York, 1995. doi: 10.1002/9783527617548.  Google Scholar

[35]

T. Ogawa, Travelling wave solutions to a perturbed Korteweg-de Vries equation, Hiroshima Math. J., 24 (1994), 401-422.   Google Scholar

[36]

D. T. Papageorgiou, The route to chaos for the Kuramoto-Sivashinsky equation, NASA Contractor Report 187461, ICASE Report 90-78,1990. Google Scholar

[37]

H. Qiong-Wei and T. Jia-Shi, Dynamic bifurcation of a modified Kuramoto-Sivashinsky equation with higher order nonlinearity, Chin. Phys. B. , 20 (2011), 094701, 5pp. Google Scholar

[38]

J. S. Russell, Report on waves, Rept. 14th Meeting of the British Association for the Advancement of Science, John Murray, London, (1844), 311-390.   Google Scholar

[39]

S. S. Shen, A Course on Nonlinear Waves, Nonlinear Topics in the Mathematical Sciences, Kluwer Academic Publishers, Dordrecht, 1993. doi: 10.1007/978-94-011-2102-6.  Google Scholar

[40]

G. I. Sivashinsky, Nonlinear analysis of hydrodynamic instability in laminar flames, Acta Astronautica, 4 (1977), 1177-1206.  doi: 10.1016/0094-5765(77)90096-0.  Google Scholar

[41]

G. I. Sivashinsky, Self-turbulence in the motion of a free particle, Foundations of Physica, 8 (1978), 735-744.  doi: 10.1007/BF00717503.  Google Scholar

[42]

Y. Smyrlis and D. Papageorgiou, Predicting chaos for infinite dimensional dynamical systems: The Kuramoto-Sivashinsky equation, a case study, Applied Mathematics, Proc. Natl. Acad. Sci. USA, 88 (1991), 11129-11132.  doi: 10.1073/pnas.88.24.11129.  Google Scholar

[43]

E. Tadmor, The well-posedness of the Kuramoto-Sivashinsky equation, SIAM J. Math. Anal., 17 (1986), 884-893.  doi: 10.1137/0517063.  Google Scholar

show all references

References:
[1]

T. B. BenjaminJ. L. Bona and J. J. Mahony, Model equations for long waves in nonlinear dispersive systems, Phil. Trans. R. Soc. London, Ser. A, 272 (1972), 47-78.  doi: 10.1098/rsta.1972.0032.  Google Scholar

[2]

D. J. Benney, Long waves on liquid films, J. Math. Phys., 45 (1966), 150-155.  doi: 10.1002/sapm1966451150.  Google Scholar

[3]

H. A. BiagioniJ. L. BonaR. J. Iorio Jr and M. Scialom, On the Korteweg-De Vries -Kuramoto-Sivashinsky Equation, Advances in Differential Equations, 1 (1996), 1-20.   Google Scholar

[4]

J. Boussinesq, Théorie de l’intumescence liquide appelée "onde solitaire" ou "de translation", se propageant dans un canal rectangulaire, C. R. Acad. Sci. Paris, 72 (1871), 755-759.   Google Scholar

[5]

J. Boussinesq, Théorie générale des mouvements, qui sont propagés dans un canal rectangulaire horizontal, C. R. Acad. Sci. Paris, 73 (1871), 256-260.   Google Scholar

[6]

J. Boussinesq, Théorie des ondes et des remous qui se propagent le long dèn canal rectangulaire horizontal, en communiquant au liquide continu dans ce canal des vitesses sensiblement pareilles de la surface au fond, J. Math. Pures Appl., 17 (1872), 55-108.   Google Scholar

[7]

J. Boussinesq, Essai sur la théorie des eaux courantes, Mémoires Présentés Par Divers Savants À L'Acad. des Sci. Inst. Nat. France, 23 (1877), 1-680.   Google Scholar

[8]

B. I. CohenJ. A. KrommesW. M. Tang and M. N. Rosenbluth, Non-linear saturation of the dissipative trapped ion mode by mode coupling, Nucl. Fusion, 16 (1976), 971-992.  doi: 10.1088/0029-5515/16/6/009.  Google Scholar

[9]

A. T. Cousin and N. A. Larkin, Initial boundary value problem for the Kuramoto-Sivashinsky equation, Mat. Contemp., 18 (2000), 97-109.   Google Scholar

[10]

P. W. Eloe and M. Usman, Fully Nonlinear Boundary Value Problems with Impulse, E. J. Qualitative Theory of Diff. Equ., 21 (2011), 1-11.   Google Scholar

[11]

C. S. Gardner, J. M. Greene and M. D. Kruskal, Phys. Rev. Lett. , 19 (1967), 1095. Google Scholar

[12]

J.-M. Ghidaglia, Weakly damped forced korteweg-de vries equations behave as finite dimensional dynamical system in the long time, Journal of Differential Equations, 74 (1988), 369-390.  doi: 10.1016/0022-0396(88)90010-1.  Google Scholar

[13]

A. Granas and J. Dugundji, Fixed Point Theory, Springer-Verlag, New York, 2003. doi: 10.1007/978-0-387-21593-8.  Google Scholar

[14]

R. Grimshaw and X. Tian, Periodic and chaotic behaviour in a reduction of the perturbed Korteweg-de Vries equation, Proc. R. Soc. Lond. A., 445 (1994), 1-21.  doi: 10.1098/rspa.1994.0045.  Google Scholar

[15]

J. K. Hale, Oscillations in Nonlinear Systems, McGraw-Hill Book Company, INC. , 1963.  Google Scholar

[16]

J. Henrard and K. R. Meyer, Averaging and bifurcations in symmetric systems, SIAM Journal on Applied Mathematics, 32 (1977), 133-145.  doi: 10.1137/0132011.  Google Scholar

[17]

J. Henrard and K. R. Meyer, Averaging and bifurcations in symmetric systems, SIAM Journal on Applied Mathematics, 32 (1977), 133-145.  doi: 10.1137/0132011.  Google Scholar

[18]

J. Jones and W. C. Troy, Steady solutions of the Kuramoto-Sivashinsky equation for small wave speed, Journal Of Differential Equations, 96 (1992), 28-55.  doi: 10.1016/0022-0396(92)90143-B.  Google Scholar

[19]

P. Kent and J. Elgin, Travelling-waves of the Kuramoto-Sivashinsky equation:periodic multiplying bifurcations, Nonlinearity, 5 (1992), 899-919.  doi: 10.1088/0951-7715/5/4/004.  Google Scholar

[20]

Y. Kuramoto and T. Tsuzuki, On the formation of dissipative structures in reaction-diffusion systems, Prog. Theor. Phys., 54 (1975), 687-699.   Google Scholar

[21]

D. J. Korteweg and G. de. Vries, On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves, Philos. Mag., 39 (1895), 422-443.  doi: 10.1080/14786449508620739.  Google Scholar

[22]

Y. Kuramoto, Diffusion-induced chaos in reactions systems, Suppl. Prog. Theor. Phys., 64 (1978), 346-367.  doi: 10.1143/PTPS.64.346.  Google Scholar

[23]

Y. Kuramoto and T. Tsuzuki, Persistent propagation of concentration waves in dissipative media far from thermal equilibrium, Prog. Theor. Phys., 55 (1976), 356-369.  doi: 10.1143/PTP.55.356.  Google Scholar

[24]

Y. Kuramoto and T. Yamada, Turbulent state in chemical reaction, Prog. Theor. Phys., 56 (1976), 724-740.  doi: 10.1143/PTP.56.724.  Google Scholar

[25]

C.-p. Li, Computing bifurcation diagrams of steady state Kuramoto-Sivashinsky equation by difference method, Journal of Shanghai University, 3 (1999), 248-250.  doi: 10.1007/s11741-999-0067-7.  Google Scholar

[26]

S. P. Lin, Finite amplitude side-band stability of a viscous film, J. Fluid Mech., 63 (1974), 417-429.  doi: 10.1017/S0022112074001704.  Google Scholar

[27]

A. Maccari, Bifurcation control in the Burgers-KdV equation, Phys. Scr. , 77 (2008), 035003. doi: 10.1088/0031-8949/77/03/035003.  Google Scholar

[28]

A. Maccari, The nonlocal oscillator, Il Nuovo Cimento, 111 (1996), 917-930.  doi: 10.1007/BF02743288.  Google Scholar

[29]

A. Maccari, The dissipative nonlocal oscillator in resonance with a periodic excitation, Il Nuovo Cimento, 111 (1996), 1173-1186.   Google Scholar

[30]

A. Maccari, Dissipative bidimensional systems and resonant excitations, International Journal of Nonlinear Mechanics, 33 (1998), 713-726.  doi: 10.1016/S0020-7462(97)00045-0.  Google Scholar

[31]

A. Maccari, Approximate solution of a class of nonlinear oscillators in resonance with a periodic excitation, Nonlinear Dynamics, 15 (1998), 329-343.  doi: 10.1023/A:1008235820302.  Google Scholar

[32]

M. B. A. Mansour, Traveling wave solutions of the Burgers-KdV equation with a fourth order term, Reports on Mathematical Physics, 63 (2009), 153-161.  doi: 10.1016/S0034-4877(09)00010-X.  Google Scholar

[33]

K. R. Meyer and D. S. Schmidt, Entrainment Domains, Funkcialaj Ekvacioj, 20 (1977), 171-192.   Google Scholar

[34]

A. H. Nayfeh and B. Balachandran, Applied Nonlinear Dynamics. Analytical, Computational, and Experimental Methods, Wiley Series in Nonlinear Science, John Wiley & Sons, Inc. , New York, 1995. doi: 10.1002/9783527617548.  Google Scholar

[35]

T. Ogawa, Travelling wave solutions to a perturbed Korteweg-de Vries equation, Hiroshima Math. J., 24 (1994), 401-422.   Google Scholar

[36]

D. T. Papageorgiou, The route to chaos for the Kuramoto-Sivashinsky equation, NASA Contractor Report 187461, ICASE Report 90-78,1990. Google Scholar

[37]

H. Qiong-Wei and T. Jia-Shi, Dynamic bifurcation of a modified Kuramoto-Sivashinsky equation with higher order nonlinearity, Chin. Phys. B. , 20 (2011), 094701, 5pp. Google Scholar

[38]

J. S. Russell, Report on waves, Rept. 14th Meeting of the British Association for the Advancement of Science, John Murray, London, (1844), 311-390.   Google Scholar

[39]

S. S. Shen, A Course on Nonlinear Waves, Nonlinear Topics in the Mathematical Sciences, Kluwer Academic Publishers, Dordrecht, 1993. doi: 10.1007/978-94-011-2102-6.  Google Scholar

[40]

G. I. Sivashinsky, Nonlinear analysis of hydrodynamic instability in laminar flames, Acta Astronautica, 4 (1977), 1177-1206.  doi: 10.1016/0094-5765(77)90096-0.  Google Scholar

[41]

G. I. Sivashinsky, Self-turbulence in the motion of a free particle, Foundations of Physica, 8 (1978), 735-744.  doi: 10.1007/BF00717503.  Google Scholar

[42]

Y. Smyrlis and D. Papageorgiou, Predicting chaos for infinite dimensional dynamical systems: The Kuramoto-Sivashinsky equation, a case study, Applied Mathematics, Proc. Natl. Acad. Sci. USA, 88 (1991), 11129-11132.  doi: 10.1073/pnas.88.24.11129.  Google Scholar

[43]

E. Tadmor, The well-posedness of the Kuramoto-Sivashinsky equation, SIAM J. Math. Anal., 17 (1986), 884-893.  doi: 10.1137/0517063.  Google Scholar

Figure 1.  Three solutions corresponding to $f=2.5$
Figure 2.  External Excitation Response Curve
Figure 3.  Frequency-Response Curve without delay
Figure 4.  Frequency-Response Curve with varying B
[1]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[2]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[3]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[4]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[5]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[6]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[7]

Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080

[8]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[9]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020276

[10]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[11]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[12]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[13]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[14]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[15]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[16]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[17]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[18]

S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020435

[19]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[20]

Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (143)
  • HTML views (433)
  • Cited by (5)

[Back to Top]